Maximum number of uncrossed lines between two given arrays
Given two arrays A[] and B[], the task is to find the maximum number of uncrossed lines between the elements of the two given arrays.
A straight line can be drawn between two array elements A[i] and B[j] only if:
- A[i] = B[j]
- The line does not intersect any other line.
Examples:
Input: A[] = {3, 9, 2}, B[] = {3, 2, 9}
Output: 2
Explanation:
The lines between A[0] to B[0] and A[1] to B[2] does not intersect each other.Input: A[] = {1, 2, 3, 4, 5}, B[] = {1, 2, 3, 4, 5}
Output: 5
Naive Approach: The idea is to generate all the subsequences of array A[] and try to find them in array B[] so that the two subsequences can be connected by joining straight lines. The longest such subsequence found to be common in A[] and B[] would have the maximum number of uncrossed lines. So print the length of that subsequence.
Time Complexity: O(M * 2N)
Auxiliary Space: O(1)
Efficient Approach: From the above approach, it can be observed that the task is to find the longest subsequence common in both the arrays. Therefore, the above approach can be optimized by finding the Longest Common Subsequence between the two arrays using Dynamic Programming.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to count maximum number // of uncrossed lines between the // two given arrays int uncrossedLines( int * a, int * b, int n, int m) { // Stores the length of lcs // obtained upto every index int dp[n + 1][m + 1]; // Iterate over first array for ( int i = 0; i <= n; i++) { // Iterate over second array for ( int j = 0; j <= m; j++) { if (i == 0 || j == 0) // Update value in dp table dp[i][j] = 0; // If both characters // are equal else if (a[i - 1] == b[j - 1]) // Update the length of lcs dp[i][j] = 1 + dp[i - 1][j - 1]; // If both characters // are not equal else // Update the table dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]); } } // Return the answer return dp[n][m]; } // Driver Code int main() { // Given array A[] and B[] int A[] = { 3, 9, 2 }; int B[] = { 3, 2, 9 }; int N = sizeof (A) / sizeof (A[0]); int M = sizeof (B) / sizeof (B[0]); // Function Call cout << uncrossedLines(A, B, N, M); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG{ // Function to count maximum number // of uncrossed lines between the // two given arrays static int uncrossedLines( int [] a, int [] b, int n, int m) { // Stores the length of lcs // obtained upto every index int [][] dp = new int [n + 1 ][m + 1 ]; // Iterate over first array for ( int i = 0 ; i <= n; i++) { // Iterate over second array for ( int j = 0 ; j <= m; j++) { if (i == 0 || j == 0 ) // Update value in dp table dp[i][j] = 0 ; // If both characters // are equal else if (a[i - 1 ] == b[j - 1 ]) // Update the length of lcs dp[i][j] = 1 + dp[i - 1 ][j - 1 ]; // If both characters // are not equal else // Update the table dp[i][j] = Math.max(dp[i - 1 ][j], dp[i][j - 1 ]); } } // Return the answer return dp[n][m]; } // Driver Code public static void main (String[] args) { // Given array A[] and B[] int A[] = { 3 , 9 , 2 }; int B[] = { 3 , 2 , 9 }; int N = A.length; int M = B.length; // Function call System.out.print(uncrossedLines(A, B, N, M)); } } // This code is contributed by code_hunt |
Python3
# Python3 program for # the above approach # Function to count maximum number # of uncrossed lines between the # two given arrays def uncrossedLines(a, b, n, m): # Stores the length of lcs # obtained upto every index dp = [[ 0 for x in range (m + 1 )] for y in range (n + 1 )] # Iterate over first array for i in range (n + 1 ): # Iterate over second array for j in range (m + 1 ): if (i = = 0 or j = = 0 ): # Update value in dp table dp[i][j] = 0 # If both characters # are equal elif (a[i - 1 ] = = b[j - 1 ]): # Update the length of lcs dp[i][j] = 1 + dp[i - 1 ][j - 1 ] # If both characters # are not equal else : # Update the table dp[i][j] = max (dp[i - 1 ][j], dp[i][j - 1 ]) # Return the answer return dp[n][m] # Driver Code if __name__ = = "__main__" : # Given array A[] and B[] A = [ 3 , 9 , 2 ] B = [ 3 , 2 , 9 ] N = len (A) M = len (B) # Function Call print (uncrossedLines(A, B, N, M)) # This code is contributed by Chitranayal |
C#
// C# program for the above approach using System; class GFG{ // Function to count maximum number // of uncrossed lines between the // two given arrays static int uncrossedLines( int [] a, int [] b, int n, int m) { // Stores the length of lcs // obtained upto every index int [,] dp = new int [n + 1, m + 1]; // Iterate over first array for ( int i = 0; i <= n; i++) { // Iterate over second array for ( int j = 0; j <= m; j++) { if (i == 0 || j == 0) // Update value in dp table dp[i, j] = 0; // If both characters // are equal else if (a[i - 1] == b[j - 1]) // Update the length of lcs dp[i, j] = 1 + dp[i - 1, j - 1]; // If both characters // are not equal else // Update the table dp[i, j] = Math.Max(dp[i - 1, j], dp[i, j - 1]); } } // Return the answer return dp[n, m]; } // Driver Code public static void Main (String[] args) { // Given array A[] and B[] int [] A = { 3, 9, 2 }; int [] B = { 3, 2, 9 }; int N = A.Length; int M = B.Length; // Function call Console.Write(uncrossedLines(A, B, N, M)); } } // This code is contributed by code_hunt } |
Javascript
<script> // Javascript program for the above approach // Function to count maximum number // of uncrossed lines between the // two given arrays function uncrossedLines(a, b, n, m) { // Stores the length of lcs // obtained upto every index let dp = new Array(n + 1); for (let i = 0; i< (n + 1); i++) { dp[i] = new Array(m + 1); for (let j = 0; j < (m + 1); j++) { dp[i][j] = 0; } } // Iterate over first array for (let i = 0; i <= n; i++) { // Iterate over second array for (let j = 0; j <= m; j++) { if (i == 0 || j == 0) // Update value in dp table dp[i][j] = 0; // If both characters // are equal else if (a[i - 1] == b[j - 1]) // Update the length of lcs dp[i][j] = 1 + dp[i - 1][j - 1]; // If both characters // are not equal else // Update the table dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]); } } // Return the answer return dp[n][m]; } // Driver Code // Given array A[] and B[] let A = [ 3, 9, 2 ]; let B = [3, 2, 9]; let N = A.length; let M = B.length; // Function call document.write(uncrossedLines(A, B, N, M)); // This code is contributed by avanitrachhadiya2155 </script> |
2
Time Complexity: O(N*M)
Auxiliary Space: O(N*M)
Efficient approach : Space optimization
In previous approach the dp[i][j] is depend upon the current and previous row of 2D matrix. So to optimize space we use a 1D vectors dp to store previous value and use prev to store the previous diagonal element and get the current computation.
Implementation Steps:
- Define a vector dp of size m+1 and initialize its first element to 0.
- For each element j in b[], iterate in reverse order from n to 1 and update dp[i] as follows:
a. If a[i – 1] == b[j – 1], set dp[j] to the previous value of dp[i-1] + 1 (diagonal element).
b. If a[i-1] != b[j-1], set dp[j] to the maximum value between dp[j] and dp[j-1] (value on the left). - Finally, return dp[m].
Implementation:
C++
// C++ code for above approach #include <bits/stdc++.h> using namespace std; // Function to count maximum number // of uncrossed lines between the // two given arrays int uncrossedLines( int * a, int * b, int n, int m) { // Stores the length of lcs // obtained upto every index vector< int > dp(m + 1, 0); // Iterate over first array for ( int i = 1; i <= n; i++) { // Initialize prev to 0 int prev = 0; // Iterate over second array for ( int j = 1; j <= m; j++) { // Store the current dp[j] int curr = dp[j]; if (a[i - 1] == b[j - 1]) dp[j] = prev + 1; else dp[j] = max(dp[j], dp[j - 1]); // Update prev prev = curr; } } // Return the answer return dp[m]; } // Driver Code int main() { // Given array A[] and B[] int A[] = { 3, 9, 2 }; int B[] = { 3, 2, 9 }; int N = sizeof (A) / sizeof (A[0]); int M = sizeof (B) / sizeof (B[0]); // Function Call cout << uncrossedLines(A, B, N, M); return 0; } // this code is contributed by bhardwajji |
Java
// Java code for above approach import java.io.*; class Main { // Function to count maximum number // of uncrossed lines between the // two given arrays static int uncrossedLines( int [] a, int [] b, int n, int m) { // Stores the length of lcs // obtained upto every index int [] dp = new int [m + 1 ]; // Iterate over first array for ( int i = 1 ; i <= n; i++) { // Initialize prev to 0 int prev = 0 ; // Iterate over second array for ( int j = 1 ; j <= m; j++) { // Store the current dp[j] int curr = dp[j]; if (a[i - 1 ] == b[j - 1 ]) dp[j] = prev + 1 ; else dp[j] = Math.max(dp[j], dp[j - 1 ]); // Update prev prev = curr; } } // Return the answer return dp[m]; } // Driver Code public static void main(String args[]) { // Given array A[] and B[] int [] A = { 3 , 9 , 2 }; int [] B = { 3 , 2 , 9 }; int N = A.length; int M = B.length; // Function Call System.out.print(uncrossedLines(A, B, N, M)); } } |
Output
2
Time Complexity: O(N*M)
Auxiliary Space: O(M)
Please Login to comment...