Maximum number of Armstrong Numbers present in a subarray of size K
Given an array arr[] consisting of N integers and a positive integer K, the task is to find the maximum count of Armstrong Numbers present in any subarray of size K.
Examples:
Input: arr[] = {28, 2, 3, 6, 153, 99, 828, 24}, K = 6
Output: 4
Explanation: The subarray {2, 3, 6, 153} contains only of Armstrong Numbers. Therefore, the count is 4, which is maximum possible.Input: arr[] = {1, 2, 3, 6}, K = 2
Output: 2
Naive Approach: The simplest approach to solve the given problem is to generate all possible subarrays of size K and for each subarray, count the numbers that are an Armstrong Number. After checking for all the subarrays, print the maximum count obtained.
Time Complexity: O(N*K)
Auxiliary Space: O(1)
Efficient Approach: The above approach can be optimized by changing each array element to 1 if it is an Armstrong Number, Otherwise, changing the array elements to 0 and then find the maximum sum subarray of size K in the updated array. Follow the steps below for the efficient approach:
- Traverse the array arr[] and if the current element arr[i] is an Armstrong Number, then replace the current element with 1. Otherwise, replace it with 0.
- After completing the above step, print the maximum sum of a subarray of size K as the maximum count of Armstrong Number in a subarray of size K.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to calculate the value of // x raised to the power y in O(log y) int power( int x, unsigned int y) { // Base Case if (y == 0) return 1; // If the power y is even if (y % 2 == 0) return power(x, y / 2) * power(x, y / 2); // Otherwise return x * power(x, y / 2) * power(x, y / 2); } // Function to calculate the order of // the number, i.e. count of digits int order( int num) { // Stores the total count of digits int count = 0; // Iterate until num is 0 while (num) { count++; num = num / 10; } return count; } // Function to check a number is // an Armstrong Number or not int isArmstrong( int N) { // Find the order of the number int r = order(N); int temp = N, sum = 0; // Check for Armstrong Number while (temp) { int d = temp % 10; sum += power(d, r); temp = temp / 10; } // If Armstrong number // condition is satisfied return (sum == N); } // Utility function to find the maximum // sum of a subarray of size K int maxSum( int arr[], int N, int K) { // If k is greater than N if (N < K) { return -1; } // Find the sum of first // subarray of size K int res = 0; for ( int i = 0; i < K; i++) { res += arr[i]; } // Find the sum of the // remaining subarray int curr_sum = res; for ( int i = K; i < N; i++) { curr_sum += arr[i] - arr[i - K]; res = max(res, curr_sum); } // Return the maximum sum // of subarray of size K return res; } // Function to find all the // Armstrong Numbers in the array int maxArmstrong( int arr[], int N, int K) { // Traverse the array arr[] for ( int i = 0; i < N; i++) { // If arr[i] is an Armstrong // Number, then replace it by // 1. Otherwise, 0 arr[i] = isArmstrong(arr[i]); } // Return the resultant count return maxSum(arr, N, K); } // Driver Code int main() { int arr[] = { 28, 2, 3, 6, 153, 99, 828, 24 }; int K = 6; int N = sizeof (arr) / sizeof (arr[0]); cout << maxArmstrong(arr, N, K); return 0; } |
Java
// Java program for above approach import java.util.*; class GFG{ // Function to calculate the value of // x raised to the power y in O(log y) static int power( int x, int y) { // Base Case if (y == 0 ) return 1 ; // If the power y is even if (y % 2 == 0 ) return power(x, y / 2 ) * power(x, y / 2 ); // Otherwise return x * power(x, y / 2 ) * power(x, y / 2 ); } // Function to calculate the order of // the number, i.e. count of digits static int order( int num) { // Stores the total count of digits int count = 0 ; // Iterate until num is 0 while (num > 0 ) { count++; num = num / 10 ; } return count; } // Function to check a number is // an Armstrong Number or not static int isArmstrong( int N) { // Find the order of the number int r = order(N); int temp = N, sum = 0 ; // Check for Armstrong Number while (temp > 0 ) { int d = temp % 10 ; sum += power(d, r); temp = temp / 10 ; } // If Armstrong number // condition is satisfied if (sum == N) return 1 ; return 0 ; } // Utility function to find the maximum // sum of a subarray of size K static int maxSum( int [] arr, int N, int K) { // If k is greater than N if (N < K) { return - 1 ; } // Find the sum of first // subarray of size K int res = 0 ; for ( int i = 0 ; i < K; i++) { res += arr[i]; } // Find the sum of the // remaining subarray int curr_sum = res; for ( int i = K; i < N; i++) { curr_sum += arr[i] - arr[i - K]; res = Math.max(res, curr_sum); } // Return the maximum sum // of subarray of size K return res; } // Function to find all the // Armstrong Numbers in the array static int maxArmstrong( int [] arr, int N, int K) { // Traverse the array arr[] for ( int i = 0 ; i < N; i++) { // If arr[i] is an Armstrong // Number, then replace it by // 1. Otherwise, 0 arr[i] = isArmstrong(arr[i]); } // Return the resultant count return maxSum(arr, N, K); } // Driver Code public static void main(String[] args) { int [] arr = { 28 , 2 , 3 , 6 , 153 , 99 , 828 , 24 }; int K = 6 ; int N = arr.length; System.out.println(maxArmstrong(arr, N, K)); } } // This code is contributed by hritikrommie. |
Python3
# Python 3 program for the above approach # Function to calculate the value of # x raised to the power y in O(log y) def power(x, y): # Base Case if (y = = 0 ): return 1 # If the power y is even if (y % 2 = = 0 ): return power(x, y / / 2 ) * power(x, y / / 2 ) # Otherwise return x * power(x, y / / 2 ) * power(x, y / / 2 ) # Function to calculate the order of # the number, i.e. count of digits def order(num): # Stores the total count of digits count = 0 # Iterate until num is 0 while (num): count + = 1 num = num / / 10 return count # Function to check a number is # an Armstrong Number or not def isArmstrong(N): # Find the order of the number r = order(N) temp = N sum = 0 # Check for Armstrong Number while (temp): d = temp % 10 sum + = power(d, r) temp = temp / / 10 # If Armstrong number # condition is satisfied return ( sum = = N) # Utility function to find the maximum # sum of a subarray of size K def maxSum(arr, N, K): # If k is greater than N if (N < K): return - 1 # Find the sum of first # subarray of size K res = 0 for i in range (K): res + = arr[i] # Find the sum of the # remaining subarray curr_sum = res for i in range (K,N, 1 ): curr_sum + = arr[i] - arr[i - K] res = max (res, curr_sum) # Return the maximum sum # of subarray of size K return res # Function to find all the # Armstrong Numbers in the array def maxArmstrong(arr, N, K): # Traverse the array arr[] for i in range (N): # If arr[i] is an Armstrong # Number, then replace it by # 1. Otherwise, 0 arr[i] = isArmstrong(arr[i]) # Return the resultant count return maxSum(arr, N, K) # Driver Code if __name__ = = '__main__' : arr = [ 28 , 2 , 3 , 6 , 153 , 99 , 828 , 24 ] K = 6 N = len (arr) print (maxArmstrong(arr, N, K)) # This code is contributed by ipg2016107. |
C#
// C# program for above approach using System; class GFG{ // Function to calculate the value of // x raised to the power y in O(log y) static int power( int x, int y) { // Base Case if (y == 0) return 1; // If the power y is even if (y % 2 == 0) return power(x, y / 2) * power(x, y / 2); // Otherwise return x * power(x, y / 2) * power(x, y / 2); } // Function to calculate the order of // the number, i.e. count of digits static int order( int num) { // Stores the total count of digits int count = 0; // Iterate until num is 0 while (num > 0) { count++; num = num / 10; } return count; } // Function to check a number is // an Armstrong Number or not static int isArmstrong( int N) { // Find the order of the number int r = order(N); int temp = N, sum = 0; // Check for Armstrong Number while (temp > 0) { int d = temp % 10; sum += power(d, r); temp = temp / 10; } // If Armstrong number // condition is satisfied if (sum == N) return 1; return 0; } // Utility function to find the maximum // sum of a subarray of size K static int maxSum( int [] arr, int N, int K) { // If k is greater than N if (N < K) { return -1; } // Find the sum of first // subarray of size K int res = 0; for ( int i = 0; i < K; i++) { res += arr[i]; } // Find the sum of the // remaining subarray int curr_sum = res; for ( int i = K; i < N; i++) { curr_sum += arr[i] - arr[i - K]; res = Math.Max(res, curr_sum); } // Return the maximum sum // of subarray of size K return res; } // Function to find all the // Armstrong Numbers in the array static int maxArmstrong( int [] arr, int N, int K) { // Traverse the array arr[] for ( int i = 0; i < N; i++) { // If arr[i] is an Armstrong // Number, then replace it by // 1. Otherwise, 0 arr[i] = isArmstrong(arr[i]); } // Return the resultant count return maxSum(arr, N, K); } // Driver Code public static void Main(String[] args) { int [] arr = { 28, 2, 3, 6, 153, 99, 828, 24 }; int K = 6; int N = arr.Length; Console.Write(maxArmstrong(arr, N, K)); } } // This code is contributed by shivanisinghss2110 |
Javascript
<script> // Javascript program for the above approach // Function to calculate the value of // x raised to the power y in O(log y) function power(x, y) { // Base Case if (y == 0) return 1; // If the power y is even if (y % 2 == 0) return power(x, Math.floor(y / 2)) * power(x, Math.floor(y / 2)); // Otherwise return x * power(x, Math.floor(y / 2)) * power(x, Math.floor(y / 2)); } // Function to calculate the order of // the number, i.e. count of digits function order(num) { // Stores the total count of digits let count = 0; // Iterate until num is 0 while (num) { count++; num = Math.floor(num / 10); } return count; } // Function to check a number is // an Armstrong Number or not function isArmstrong(N) { // Find the order of the number let r = order(N); let temp = N, sum = 0; // Check for Armstrong Number while (temp) { let d = temp % 10; sum += power(d, r); temp = Math.floor(temp / 10); } // If Armstrong number // condition is satisfied return sum == N; } // Utility function to find the maximum // sum of a subarray of size K function maxSum(arr, N, K) { // If k is greater than N if (N < K) { return -1; } // Find the sum of first // subarray of size K let res = 0; for (let i = 0; i < K; i++) { res += arr[i]; } // Find the sum of the // remaining subarray let curr_sum = res; for (let i = K; i < N; i++) { curr_sum += arr[i] - arr[i - K]; res = Math.max(res, curr_sum); } // Return the maximum sum // of subarray of size K return res; } // Function to find all the // Armstrong Numbers in the array function maxArmstrong(arr, N, K) { // Traverse the array arr[] for (let i = 0; i < N; i++) { // If arr[i] is an Armstrong // Number, then replace it by // 1. Otherwise, 0 arr[i] = isArmstrong(arr[i]); } // Return the resultant count return maxSum(arr, N, K); } // Driver Code let arr = [ 28, 2, 3, 6, 153, 99, 828, 24 ]; let K = 6; let N = arr.length; document.write(maxArmstrong(arr, N, K)); // This code is contributed by gfgking </script> |
4
Time Complexity: O(N * d), where d is the maximum number of digits in any array element.
Auxiliary Space: O(N)
Please Login to comment...