Maximum number of chocolates to be distributed equally among k students
Given n boxes containing some chocolates arranged in a row. There are k number of students. The problem is to distribute maximum number of chocolates equally among k students by selecting a consecutive sequence of boxes from the given lot. Consider the boxes are arranged in a row with numbers from 1 to n from left to right. We have to select a group of boxes which are in consecutive order that could provide maximum number of chocolates equally to all the k students. An array arr[] is given representing the row arrangement of the boxes and arr[i] represents number of chocolates in that box at position ‘i’.
Examples:
Input : arr[] = {2, 7, 6, 1, 4, 5}, k = 3 Output : 6 The subarray is {7, 6, 1, 4} with sum 18. Equal distribution of 18 chocolates among 3 students is 6. Note that the selected boxes are in consecutive order with indexes {1, 2, 3, 4}.
Source: Asked in Amazon.
The problem is to find maximum sum sub-array divisible by k and then return (sum / k).
Method 1 (Naive Approach): Consider the sum of all the sub-arrays. Select the maximum sum. Let it be maxSum. Return (maxSum / k). Time Complexity is of O(n2).
Method 2 (Efficient Approach): Create an array sum[] where sum[i] stores sum(arr[0]+..arr[i]). Create a hash table having tuple as (ele, idx), where ele represents an element of (sum[i] % k) and idx represents the element’s index of first occurrence when array sum[] is being traversed from left to right. Now traverse sum[] from i = 0 to n and follow the steps given below.
- Calculate current remainder as curr_rem = sum[i] % k.
- If curr_rem == 0, then check if maxSum < sum[i], update maxSum = sum[i].
- Else if curr_rem is not present in the hash table, then create tuple (curr_rem, i) in the hash table.
- Else, get the value associated with curr_rem in the hash table. Let this be idx. Now, if maxSum < (sum[i] – sum[idx]) then update maxSum = sum[i] – sum[idx].
Finally, return (maxSum / k).
Explanation:
If (sum[i] % k) == (sum[j] % k), where sum[i] = sum(arr[0]+..+arr[i]) and sum[j] = sum(arr[0]+..+arr[j]) and ‘i’ is less than ‘j’, then sum(arr[i+1]+..+arr[j]) must be divisible by ‘k’.
Implementation:
C++
// C++ implementation to find the maximum number // of chocolates to be distributed equally among // k students #include <bits/stdc++.h> using namespace std; // function to find the maximum number of chocolates // to be distributed equally among k students int maxNumOfChocolates( int arr[], int n, int k) { // unordered_map 'um' implemented as // hash table unordered_map< int , int > um; // 'sum[]' to store cumulative sum, where // sum[i] = sum(arr[0]+..arr[i]) int sum[n], curr_rem; // to store sum of sub-array having maximum sum int maxSum = 0; // building up 'sum[]' sum[0] = arr[0]; for ( int i = 1; i < n; i++) sum[i] = sum[i - 1] + arr[i]; // traversing 'sum[]' for ( int i = 0; i < n; i++) { // finding current remainder curr_rem = sum[i] % k; // if true then sum(0..i) is divisible // by k if (curr_rem == 0) { // update 'maxSum' if (maxSum < sum[i]) maxSum = sum[i]; } // if value 'curr_rem' not present in 'um' // then store it in 'um' with index of its // first occurrence else if (um.find(curr_rem) == um.end()) um[curr_rem] = i; else // if true, then update 'max' if (maxSum < (sum[i] - sum[um[curr_rem]])) maxSum = sum[i] - sum[um[curr_rem]]; } // required maximum number of chocolates to be // distributed equally among 'k' students return (maxSum / k); } // Driver program to test above int main() { int arr[] = { 2, 7, 6, 1, 4, 5 }; int n = sizeof (arr) / sizeof (arr[0]); int k = 3; cout << "Maximum number of chocolates: " << maxNumOfChocolates(arr, n, k); return 0; } |
Java
// Java implementation to find the maximum number // of chocolates to be distributed equally among // k students import java.io.*; import java.util.*; class GFG { // Function to find the maximum number of chocolates // to be distributed equally among k students static int maxNumOfChocolates( int arr[], int n, int k) { // Hash table HashMap <Integer,Integer> um = new HashMap<Integer,Integer>(); // 'sum[]' to store cumulative sum, where // sum[i] = sum(arr[0]+..arr[i]) int [] sum= new int [n]; int curr_rem; // To store sum of sub-array having maximum sum int maxSum = 0 ; // Building up 'sum[]' sum[ 0 ] = arr[ 0 ]; for ( int i = 1 ; i < n; i++) sum[i] = sum[i - 1 ] + arr[i]; // Traversing 'sum[]' for ( int i = 0 ; i < n; i++) { // Finding current remainder curr_rem = sum[i] % k; // If true then sum(0..i) is divisible // by k if (curr_rem == 0 ) { // update 'maxSum' if (maxSum < sum[i]) maxSum = sum[i]; } // If value 'curr_rem' not present in 'um' // then store it in 'um' with index of its // first occurrence else if (!um.containsKey(curr_rem) ) um.put(curr_rem , i); else // If true, then update 'max' if (maxSum < (sum[i] - sum[um.get(curr_rem)])) maxSum = sum[i] - sum[um.get(curr_rem)]; } // Required maximum number of chocolates to be // distributed equally among 'k' students return (maxSum / k); } // Driver Code public static void main(String[] args) { int arr[] = { 2 , 7 , 6 , 1 , 4 , 5 }; int n = arr.length; int k = 3 ; System.out.println( "Maximum number of chocolates: " + maxNumOfChocolates(arr, n, k)); } } // This code is contributed by 'Gitanjali'. |
Python3
# Python3 implementation to # find the maximum number # of chocolates to be # distributed equally # among k students # function to find the # maximum number of chocolates # to be distributed equally # among k students def maxNumOfChocolates(arr, n, k): um, curr_rem, maxSum = {}, 0 , 0 # 'sm[]' to store cumulative sm, # where sm[i] = sm(arr[0]+..arr[i]) sm = [ 0 ] * n sm[ 0 ] = arr[ 0 ] # building up 'sm[]' for i in range ( 1 , n): sm[i] = sm[i - 1 ] + arr[i] # traversing 'sm[]' for i in range (n): # finding current remainder curr_rem = sm[i] % k if ( not curr_rem and maxSum < sm[i]) : maxSum = sm[i] elif ( not curr_rem in um) : um[curr_rem] = i elif (maxSum < (sm[i] - sm[um[curr_rem]])): maxSum = sm[i] - sm[um[curr_rem]] return maxSum / / k # Driver program to test above arr = [ 2 , 7 , 6 , 1 , 4 , 5 ] n, k = len (arr), 3 print ( "Maximum number of chocolates: " + str (maxNumOfChocolates(arr, n, k))) # This code is contributed by Ansu Kumari |
C#
// C# implementation to find // the maximum number of // chocolates to be distributed // equally among k students using System; using System.Collections.Generic; class GFG { // Function to find the // maximum number of // chocolates to be distributed // equally among k students static int maxNumOfChocolates( int []arr, int n, int k) { // Hash table Dictionary < int , int > um = new Dictionary< int , int >(); // 'sum[]' to store cumulative // sum, where sum[i] = // sum(arr[0]+..arr[i]) int [] sum = new int [n]; int curr_rem; // To store sum of sub-array // having maximum sum int maxSum = 0; // Building up 'sum[]' sum[0] = arr[0]; for ( int i = 1; i < n; i++) sum[i] = sum[i - 1] + arr[i]; // Traversing 'sum[]' for ( int i = 0; i < n; i++) { // Finding current // remainder curr_rem = sum[i] % k; // If true then sum(0..i) // is divisible by k if (curr_rem == 0) { // update 'maxSum' if (maxSum < sum[i]) maxSum = sum[i]; } // If value 'curr_rem' not // present in 'um' then store // it in 'um' with index of // its first occurrence else if (!um.ContainsKey(curr_rem)) um.Add(curr_rem , i); else // If true, then // update 'max' if (maxSum < (sum[i] - sum[um[curr_rem]])) maxSum = sum[i] - sum[um[curr_rem]]; } // Required maximum number // of chocolates to be // distributed equally // among 'k' students return (maxSum / k); } // Driver Code static void Main() { int []arr = new int []{ 2, 7, 6, 1, 4, 5 }; int n = arr.Length; int k = 3; Console.Write( "Maximum number of chocolates: " + maxNumOfChocolates(arr, n, k)); } } // This code is contributed by // Manish Shaw(manishshaw1) |
Javascript
<script> // Javascript implementation to find the maximum number // of chocolates to be distributed equally among // k students // function to find the maximum number of chocolates // to be distributed equally among k students function maxNumOfChocolates(arr, n, k) { // unordered_map 'um' implemented as // hash table var um = new Map(); // 'sum[]' to store cumulative sum, where // sum[i] = sum(arr[0]+..arr[i]) var sum = Array(n), curr_rem; // to store sum of sub-array having maximum sum var maxSum = 0; // building up 'sum[]' sum[0] = arr[0]; for ( var i = 1; i < n; i++) sum[i] = sum[i - 1] + arr[i]; // traversing 'sum[]' for ( var i = 0; i < n; i++) { // finding current remainder curr_rem = sum[i] % k; // if true then sum(0..i) is divisible // by k if (curr_rem == 0) { // update 'maxSum' if (maxSum < sum[i]) maxSum = sum[i]; } // if value 'curr_rem' not present in 'um' // then store it in 'um' with index of its // first occurrence else if (!um.has(curr_rem)) um.set(curr_rem, i); else // if true, then update 'max' if (maxSum < (sum[i] - sum[um.get(curr_rem)])) maxSum = sum[i] - sum[um.get(curr_rem)]; } // required maximum number of chocolates to be // distributed equally among 'k' students return (maxSum / k); } // Driver program to test above var arr = [2, 7, 6, 1, 4, 5]; var n = arr.length; var k = 3; document.write( "Maximum number of chocolates: " + maxNumOfChocolates(arr, n, k)); // This code is contributed by rutvik_56. </script> |
Output :
Maximum number of chocolates: 6
Time Complexity: O(n).
Auxiliary Space: O(n).
Please Login to comment...