Maximize Perimeter of Quadrilateral formed by choosing sides from given Array
Given an array arr of size N where each element represents the length of a side, the task is to find the maximum perimeter quadrilateral that can be created using the sides in the given array. If no quadrilateral can be formed print -1.
Examples:
Input: arr[ ] = {3, 1, 2, 4, 2, 1}
Output: 11
Explanation: A quadrilateral of perimeter 4 + 3 + 2 + 2 = 11 can be formed which is the maximum possible.Input: arr[ ] = {1, 1, 2, 2, 20}
Output: 6Input: arr[ ] = {1, 2, 4, 10}
Output: -1
Approach: The given problem can be solved by iterating through all the possible combinations of the sides (a, b, c, d) from the given array. It can be observed that sides a, b, c, and d form a valid quadrilateral only if the sum of three smaller sides is greater than or equal to the largest side, or the perimeter of the quadrilateral is greater than or equal to (2 * largest side). Therefore, iterate through all the possible values of (a, b, c, d) from the given array arr[] and check if it forms a valid quadrilateral.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find largest perimeter // of a possible quadrilateral int largestPerimeterQuad( int * arr, int n) { // Stores the final answer int ans = -1; // Loop to iterate over all possible // sides (a, b, c, d) that can be // formed from the given array for ( int i = 0; i < n; i++) { for ( int j = i + 1; j < n; j++) { for ( int k = j + 1; k < n; k++) { for ( int l = k + 1; l < n; l++) { // If a quadrilateral can // be formed from current // selected sides if (arr[i] + arr[j] + arr[k] + arr[l] >= 2 * max(arr[i], max(arr[j], max(arr[k], arr[l])))) // Update maximum ans = max(ans, arr[i] + arr[j] + arr[k] + arr[l]); } } } } // Return Answer return ans; } // Driver Code int main() { int arr[] = { 3, 1, 2, 4, 2, 1 }; int n = sizeof (arr) / sizeof ( int ); cout << largestPerimeterQuad(arr, n); return 0; } |
Java
// Java program for the above approach import java.util.*; public class GFG { // Function to find largest perimeter // of a possible quadrilateral static int largestPerimeterQuad( int []arr, int n) { // Stores the final answer int ans = - 1 ; // Loop to iterate over all possible // sides (a, b, c, d) that can be // formed from the given array for ( int i = 0 ; i < n; i++) { for ( int j = i + 1 ; j < n; j++) { for ( int k = j + 1 ; k < n; k++) { for ( int l = k + 1 ; l < n; l++) { // If a quadrilateral can // be formed from current // selected sides if (arr[i] + arr[j] + arr[k] + arr[l] >= 2 * Math.max(arr[i], Math.max(arr[j], Math.max(arr[k], arr[l])))) // Update maximum ans = Math.max(ans, arr[i] + arr[j] + arr[k] + arr[l]); } } } } // Return Answer return ans; } // Driver Code public static void main(String args[]) { int []arr = { 3 , 1 , 2 , 4 , 2 , 1 }; int n = arr.length; System.out.print(largestPerimeterQuad(arr, n)); } } // This code is contributed by Samim Hossain Mondal. |
Python3
# Python program for the above approach # Function to find largest perimeter # of a possible quadrilateral def largestPerimeterQuad(arr, n): # Stores the final answer ans = - 1 # Loop to iterate over all possible # sides (a, b, c, d) that can be # formed from the given array for i in range (n): for j in range (i + 1 , n): for k in range (j + 1 , n): for l in range (k + 1 , n): # If a quadrilateral can # be formed from current # selected sides if (arr[i] + arr[j] + arr[k] + arr[l] > = 2 * max (arr[i], max (arr[j], max (arr[k], arr[l])))): # Update maximum ans = max (ans, arr[i] + arr[j] + arr[k] + arr[l]) # Return Answer return ans # Driver Code arr = [ 3 , 1 , 2 , 4 , 2 , 1 ] n = len (arr) print (largestPerimeterQuad(arr, n)) # This code is contributed by gfgking |
C#
// C# program for the above approach using System; class GFG { // Function to find largest perimeter // of a possible quadrilateral static int largestPerimeterQuad( int []arr, int n) { // Stores the final answer int ans = -1; // Loop to iterate over all possible // sides (a, b, c, d) that can be // formed from the given array for ( int i = 0; i < n; i++) { for ( int j = i + 1; j < n; j++) { for ( int k = j + 1; k < n; k++) { for ( int l = k + 1; l < n; l++) { // If a quadrilateral can // be formed from current // selected sides if (arr[i] + arr[j] + arr[k] + arr[l] >= 2 * Math.Max(arr[i], Math.Max(arr[j], Math.Max(arr[k], arr[l])))) // Update maximum ans = Math.Max(ans, arr[i] + arr[j] + arr[k] + arr[l]); } } } } // Return Answer return ans; } // Driver Code public static void Main() { int []arr = { 3, 1, 2, 4, 2, 1 }; int n = arr.Length; Console.Write(largestPerimeterQuad(arr, n)); } } // This code is contributed by Samim Hossain Mondal. |
Javascript
<script> // JavaScript program for the above approach // Function to find largest perimeter // of a possible quadrilateral const largestPerimeterQuad = (arr, n) => { // Stores the final answer let ans = -1; // Loop to iterate over all possible // sides (a, b, c, d) that can be // formed from the given array for (let i = 0; i < n; i++) { for (let j = i + 1; j < n; j++) { for (let k = j + 1; k < n; k++) { for (let l = k + 1; l < n; l++) { // If a quadrilateral can // be formed from current // selected sides if (arr[i] + arr[j] + arr[k] + arr[l] >= 2 * Math.max(arr[i], Math.max(arr[j], Math.max(arr[k], arr[l])))) // Update maximum ans = Math.max(ans, arr[i] + arr[j] + arr[k] + arr[l]); } } } } // Return Answer return ans; } // Driver Code let arr = [3, 1, 2, 4, 2, 1]; let n = arr.length; document.write(largestPerimeterQuad(arr, n)); // This code is contributed by rakeshsahni </script> |
11
Time Complexity: O(N4)
Auxiliary Space: O(1)
Please Login to comment...