Matrix Multiplication | Recursive
Given two matrices A and B. The task is to multiply matrix A and matrix B recursively. If matrix A and matrix B are not multiplicative compatible, then generate output “Not Possible”.
Examples :
Input: A = 12 56 45 78 B = 2 6 5 8 Output: 304 520 480 894 Input: A = 1 2 3 4 5 6 7 8 9 B = 1 2 3 4 5 6 7 8 9 Output: 30 36 42 66 81 96 102 126 150
It is recommended to first refer Iterative Matrix Multiplication.
First check if multiplication between matrices is possible or not. For this, check if number of columns of first matrix is equal to number of rows of second matrix or not. If both are equal than proceed further otherwise generate output “Not Possible”.
In Recursive Matrix Multiplication, we implement three loops of Iteration through recursive calls. The inner most Recursive call of multiplyMatrix() is to iterate k (col1 or row2). The second recursive call of multiplyMatrix() is to change the columns and the outermost recursive call is to change rows.
Below is Recursive Matrix Multiplication code.
Java
// Java recursive code for Matrix Multiplication class GFG { public static int MAX = 100 ; // Note that below variables are static // i and j are used to know current cell of // result matrix C[][]. k is used to know // current column number of A[][] and row // number of B[][] to be multiplied public static int i = 0 , j = 0 , k = 0 ; static void multiplyMatrixRec( int row1, int col1, int A[][], int row2, int col2, int B[][], int C[][]) { // If all rows traversed if (i >= row1) return ; // If i < row1 if (j < col2) { if (k < col1) { C[i][j] += A[i][k] * B[k][j]; k++; multiplyMatrixRec(row1, col1, A, row2, col2, B, C); } k = 0 ; j++; multiplyMatrixRec(row1, col1, A, row2, col2, B, C); } j = 0 ; i++; multiplyMatrixRec(row1, col1, A, row2, col2, B, C); } // Function to multiply two matrices A[][] and B[][] static void multiplyMatrix( int row1, int col1, int A[][], int row2, int col2, int B[][]) { if (row2 != col1) { System.out.println( "Not Possible\n" ); return ; } int [][] C = new int [MAX][MAX]; multiplyMatrixRec(row1, col1, A, row2, col2, B, C); // Print the result for ( int i = 0 ; i < row1; i++) { for ( int j = 0 ; j < col2; j++) System.out.print(C[i][j]+ " " ); System.out.println(); } } // driver program public static void main (String[] args) { int row1 = 3 , col1 = 3 , row2 = 3 , col2 = 3 ; int A[][] = { { 1 , 2 , 3 }, { 4 , 5 , 6 }, { 7 , 8 , 9 }}; int B[][] = { { 1 , 2 , 3 }, { 4 , 5 , 6 }, { 7 , 8 , 9 } }; multiplyMatrix(row1, col1, A, row2, col2, B); } } // Contributed by Pramod Kumar |
Python3
# Recursive code for Matrix Multiplication MAX = 100 i = 0 j = 0 k = 0 def multiplyMatrixRec(row1, col1, A, row2, col2, B, C): # Note that below variables are static # i and j are used to know current cell of # result matrix C[][]. k is used to know # current column number of A[][] and row # number of B[][] to be multiplied global i global j global k # If all rows traversed. if (i > = row1): return # If i < row1 if (j < col2): if (k < col1): C[i][j] + = A[i][k] * B[k][j] k + = 1 multiplyMatrixRec(row1, col1, A, row2, col2,B, C) k = 0 j + = 1 multiplyMatrixRec(row1, col1, A, row2, col2, B, C) j = 0 i + = 1 multiplyMatrixRec(row1, col1, A, row2, col2, B, C) # Function to multiply two matrices # A[][] and B[][] def multiplyMatrix(row1, col1, A, row2, col2, B): if (row2 ! = col1): print ( "Not Possible" ) return C = [[ 0 for i in range ( MAX )] for i in range ( MAX )] multiplyMatrixRec(row1, col1, A, row2, col2, B, C) # Print the result for i in range (row1): for j in range (col2): print ( C[i][j], end = " " ) print () # Driver Code A = [[ 1 , 2 , 3 ], [ 4 , 5 , 6 ], [ 7 , 8 , 9 ]] B = [[ 1 , 2 , 3 ], [ 4 , 5 , 6 ], [ 7 , 8 , 9 ]] row1 = 3 col1 = 3 row2 = 3 col2 = 3 multiplyMatrix(row1, col1, A, row2, col2, B) # This code is contributed by sahilshelangia |
C#
// C# recursive code for // Matrix Multiplication using System; class GFG { public static int MAX = 100; // Note that below variables // are static i and j are used // to know current cell of result // matrix C[][]. k is used to // know current column number of // A[][] and row number of B[][] // to be multiplied public static int i = 0, j = 0, k = 0; static void multiplyMatrixRec( int row1, int col1, int [,]A, int row2, int col2, int [,]B, int [,]C) { // If all rows traversed if (i >= row1) return ; // If i < row1 if (j < col2) { if (k < col1) { C[i, j] += A[i, k] * B[k, j]; k++; multiplyMatrixRec(row1, col1, A, row2, col2, B, C); } k = 0; j++; multiplyMatrixRec(row1, col1, A, row2, col2, B, C); } j = 0; i++; multiplyMatrixRec(row1, col1, A, row2, col2, B, C); } // Function to multiply two // matrices A[][] and B[][] static void multiplyMatrix( int row1, int col1, int [,]A, int row2, int col2, int [,]B) { if (row2 != col1) { Console.WriteLine( "Not Possible\n" ); return ; } int [,]C = new int [MAX, MAX]; multiplyMatrixRec(row1, col1, A, row2, col2, B, C); // Print the result for ( int i = 0; i < row1; i++) { for ( int j = 0; j < col2; j++) Console.Write(C[i, j] + " " ); Console.WriteLine(); } } // Driver Code static public void Main () { int row1 = 3, col1 = 3, row2 = 3, col2 = 3; int [,]A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}; int [,]B = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}; multiplyMatrix(row1, col1, A, row2, col2, B); } } // This code is contributed by m_kit |
Javascript
<script> // Javascript recursive code for Matrix Multiplication let MAX = 100; // Note that below variables are static // i and j are used to know current cell of // result matrix C[][]. k is used to know // current column number of A[][] and row // number of B[][] to be multiplied let i = 0, j = 0, k = 0; function multiplyMatrixRec(row1, col1, A, row2, col2, B, C) { // If all rows traversed if (i >= row1) return ; // If i < row1 if (j < col2) { if (k < col1) { C[i][j] += A[i][k] * B[k][j]; k++; multiplyMatrixRec(row1, col1, A, row2, col2, B, C); } k = 0; j++; multiplyMatrixRec(row1, col1, A, row2, col2, B, C); } j = 0; i++; multiplyMatrixRec(row1, col1, A, row2, col2, B, C); } // Function to multiply two matrices A[][] and B[][] function multiplyMatrix(row1, col1, A, row2, col2, B) { if (row2 != col1) { document.write( "Not Possible" + "</br>" ); return ; } let C = new Array(MAX); for (let i = 0; i < MAX; i++) { C[i] = new Array(MAX); for (let j = 0; j < MAX; j++) { C[i][j] = 0; } } multiplyMatrixRec(row1, col1, A, row2, col2, B, C); // Print the result for (let i = 0; i < row1; i++) { for (let j = 0; j < col2; j++) document.write(C[i][j]+ " " ); document.write( "</br>" ); } } let row1 = 3, col1 = 3, row2 = 3, col2 = 3; let A = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]; let B = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]; multiplyMatrix(row1, col1, A, row2, col2, B); </script> |
C++
// Recursive code for Matrix Multiplication #include <stdio.h> const int MAX = 100; void multiplyMatrixRec( int row1, int col1, int A[][MAX], int row2, int col2, int B[][MAX], int C[][MAX]) { // Note that below variables are static // i and j are used to know current cell of // result matrix C[][]. k is used to know // current column number of A[][] and row // number of B[][] to be multiplied static int i = 0, j = 0, k = 0; // If all rows traversed. if (i >= row1) return ; // If i < row1 if (j < col2) { if (k < col1) { C[i][j] += A[i][k] * B[k][j]; k++; multiplyMatrixRec(row1, col1, A, row2, col2, B, C); } k = 0; j++; multiplyMatrixRec(row1, col1, A, row2, col2, B, C); } j = 0; i++; multiplyMatrixRec(row1, col1, A, row2, col2, B, C); } // Function to multiply two matrices A[][] and B[][] void multiplyMatrix( int row1, int col1, int A[][MAX], int row2, int col2, int B[][MAX]) { if (row2 != col1) { printf ( "Not Possible\n" ); return ; } int C[MAX][MAX] = { 0 }; multiplyMatrixRec(row1, col1, A, row2, col2, B, C); // Print the result for ( int i = 0; i < row1; i++) { for ( int j = 0; j < col2; j++) printf ( "%d " , C[i][j]); printf ( "\n" ); } } // Driven Program int main() { int A[][MAX] = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; int B[][MAX] = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; int row1 = 3, col1 = 3, row2 = 3, col2 = 3; multiplyMatrix(row1, col1, A, row2, col2, B); return 0; } // This code is contributed by Aarti_Rathi |
30 36 42 66 81 96 102 126 150
Time Complexity: O(row1 * col2)
Auxiliary Space: O(log (max(row1,col2)), As implicit stack is used due to recursion
This article is contributed by Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...