Make largest palindrome by changing at most K-digits
Given a string containing all digits, we need to convert this string to a palindrome by changing at most K digits. If many solutions are possible then print lexicographically largest one.
Examples:
Input : str = “43435” k = 3 Output : "93939" Explanation: Lexicographically largest palindrome after 3 changes is "93939" Input : str = “43435” k = 1 Output : “53435” Explanation: Lexicographically largest palindrome after 3 changes is “53435” Input : str = “12345” k = 1 Output : "Not Possible" Explanation: It is not possible to make str palindrome after 1 change.
Approach:
- Solve this problem using two pointers method. We start from left and right and if both digits are not equal then we replace the smaller value with larger value and decrease k by 1. S
- top when the left and right pointers cross each other, after they stop if value of k is negative, then it is not possible to make string palindrome using k changes. If k is positive, then we can further maximize the string by looping once again in the same manner from left and right and converting both the digits to 9 and decreasing k by 2.
- If k value remains to 1 and string length is odd then we make the middle character as 9 to maximize whole value.
Below is the implementation of above approach:
C++
// C++ program to get largest palindrome changing // atmost K digits #include <bits/stdc++.h> using namespace std; // Returns maximum possible // palindrome using k changes string maximumPalinUsingKChanges(string str, int k) { string palin = str; // Initialize l and r by leftmost and // rightmost ends int l = 0; int r = str.length() - 1; // first try to make string palindrome while (l < r) { // Replace left and right character by // maximum of both if (str[l] != str[r]) { palin[l] = palin[r] = max(str[l], str[r]); k--; } l++; r--; } // If k is negative then we can't make // string palindrome if (k < 0) return "Not possible" ; l = 0; r = str.length() - 1; while (l <= r) { // At mid character, if K>0 then change // it to 9 if (l == r) { if (k > 0) palin[l] = '9' ; } // If character at lth (same as rth) is // less than 9 if (palin[l] < '9' ) { /* If none of them is changed in the previous loop then subtract 2 from K and convert both to 9 */ if (k >= 2 && palin[l] == str[l] && palin[r] == str[r]) { k -= 2; palin[l] = palin[r] = '9' ; } /* If one of them is changed in the previous loop then subtract 1 from K (1 more is subtracted already) and make them 9 */ else if (k >= 1 && (palin[l] != str[l] || palin[r] != str[r])) { k--; palin[l] = palin[r] = '9' ; } } l++; r--; } return palin; } // Driver code to test above methods int main() { string str = "43435" ; int k = 3; cout << maximumPalinUsingKChanges(str, k); return 0; } |
Java
// Java program to get largest palindrome changing // atmost K digits import java.text.ParseException; class GFG { // Returns maximum possible // palindrome using k changes static String maximumPalinUsingKChanges(String str, int k) { char palin[] = str.toCharArray(); String ans = "" ; // Initialize l and r by leftmost and // rightmost ends int l = 0 ; int r = str.length() - 1 ; // First try to make String palindrome while (l < r) { // Replace left and right character by // maximum of both if (str.charAt(l) != str.charAt(r)) { palin[l] = palin[r] = ( char )Math.max( str.charAt(l), str.charAt(r)); k--; } l++; r--; } // If k is negative then we can't make // String palindrome if (k < 0 ) { return "Not possible" ; } l = 0 ; r = str.length() - 1 ; while (l <= r) { // At mid character, if K>0 then change // it to 9 if (l == r) { if (k > 0 ) { palin[l] = '9' ; } } // If character at lth (same as rth) is // less than 9 if (palin[l] < '9' ) { /* If none of them is changed in the previous loop then subtract 2 from K and convert both to 9 */ if (k >= 2 && palin[l] == str.charAt(l) && palin[r] == str.charAt(r)) { k -= 2 ; palin[l] = palin[r] = '9' ; } /* If one of them is changed in the previous loop then subtract 1 from K (1 more is subtracted already) and make them 9 */ else if (k >= 1 && (palin[l] != str.charAt(l) || palin[r] != str.charAt(r))) { k--; palin[l] = palin[r] = '9' ; } } l++; r--; } for ( int i = 0 ; i < palin.length; i++) ans += palin[i]; return ans; } // Driver code to test above methods public static void main(String[] args) throws ParseException { String str = "43435" ; int k = 3 ; System.out.println( maximumPalinUsingKChanges(str, k)); } } // This code is contributed by 29ajaykumar |
C#
// C# program to get largest palindrome changing // atmost K digits using System; public class GFG { // Returns maximum possible // palindrome using k changes static String maximumPalinUsingKChanges(String str, int k) { char [] palin = str.ToCharArray(); String ans = "" ; // Initialize l and r by leftmost and // rightmost ends int l = 0; int r = str.Length - 1; // First try to make String palindrome while (l < r) { // Replace left and right character by // maximum of both if (str[l] != str[r]) { palin[l] = palin[r] = ( char )Math.Max(str[l], str[r]); k--; } l++; r--; } // If k is negative then we can't make // String palindrome if (k < 0) { return "Not possible" ; } l = 0; r = str.Length - 1; while (l <= r) { // At mid character, if K>0 then change // it to 9 if (l == r) { if (k > 0) { palin[l] = '9' ; } } // If character at lth (same as rth) is // less than 9 if (palin[l] < '9' ) { /* If none of them is changed in the previous loop then subtract 2 from K and convert both to 9 */ if (k >= 2 && palin[l] == str[l] && palin[r] == str[r]) { k -= 2; palin[l] = palin[r] = '9' ; } /* If one of them is changed in the previous loop then subtract 1 from K (1 more is subtracted already) and make them 9 */ else if (k >= 1 && (palin[l] != str[l] || palin[r] != str[r])) { k--; palin[l] = palin[r] = '9' ; } } l++; r--; } for ( int i = 0; i < palin.Length; i++) ans += palin[i]; return ans; } // Driver code to test above methods public static void Main() { String str = "43435" ; int k = 3; Console.Write(maximumPalinUsingKChanges(str, k)); } } // This code is contributed by Rajput-Ji |
Python
# Python3 program to get largest palindrome changing # atmost K digits # Returns maximum possible # palindrome using k changes def maximumPalinUsingKChanges(strr, k): palin = strr[::] # Initialize l and r by leftmost and # rightmost ends l = 0 r = len (strr) - 1 # first try to make palindrome while (l < = r): # Replace left and right character by # maximum of both if (strr[l] ! = strr[r]): palin[l] = palin[r] = max (strr[l], strr[r]) # print(strr[l],strr[r]) k - = 1 l + = 1 r - = 1 # If k is negative then we can't make # palindrome if (k < 0 ): return "Not possible" l = 0 r = len (strr) - 1 while (l < = r): # At mid character, if K>0 then change # it to 9 if (l = = r): if (k > 0 ): palin[l] = '9' # If character at lth (same as rth) is # less than 9 if (palin[l] < '9' ): # If none of them is changed in the # previous loop then subtract 2 from K # and convert both to 9 if (k > = 2 and palin[l] = = strr[l] and palin[r] = = strr[r]): k - = 2 palin[l] = palin[r] = '9' # If one of them is changed in the previous # loop then subtract 1 from K (1 more is # subtracted already) and make them 9 elif (k > = 1 and (palin[l] ! = strr[l] or palin[r] ! = strr[r])): k - = 1 palin[l] = palin[r] = '9' l + = 1 r - = 1 return palin # Driver code st = "43435" strr = [i for i in st] k = 3 a = maximumPalinUsingKChanges(strr, k) print ("".join(a)) # This code is contributed by mohit kumar 29 |
Javascript
<script> // Javascript program to get largest palindrome changing // atmost K digits // Returns maximum possible // palindrome using k changes function maximumPalinUsingKChanges(str,k) { let palin = str.split( "" ); let ans = "" ; // Initialize l and r by leftmost and // rightmost ends let l = 0; let r = str.length - 1; // First try to make String palindrome while (l < r) { // Replace left and right character by // maximum of both if (str[l] != str[r]) { palin[l] = palin[r] = String.fromCharCode(Math.max( str.charAt(l), str.charAt(r))); k--; } l++; r--; } // If k is negative then we can't make // String palindrome if (k < 0) { return "Not possible" ; } l = 0; r = str.length - 1; while (l <= r) { // At mid character, if K>0 then change // it to 9 if (l == r) { if (k > 0) { palin[l] = '9 '; } } // If character at lth (same as rth) is // less than 9 if (palin[l] < ' 9 ') { /* If none of them is changed in the previous loop then subtract 2 from K and convert both to 9 */ if (k >= 2 && palin[l] == str[l] && palin[r] == str[r]) { k -= 2; palin[l] = palin[r] = ' 9 '; } /* If one of them is changed in the previous loop then subtract 1 from K (1 more is subtracted already) and make them 9 */ else if (k >= 1 && (palin[l] != str[l] || palin[r] != str[r])) { k--; palin[l] = palin[r] = ' 9'; } } l++; r--; } for (let i = 0; i < palin.length; i++) ans += palin[i]; return ans; } // Driver code to test above methods let str = "43435" ; let k = 3; document.write(maximumPalinUsingKChanges(str, k)); // This code is contributed by unknown2108 </script> |
93939
Time complexity: O(n)
Auxiliary Space: O(n) because it is using extra space for creating array and string
Approach 2: Using Greedy Algorithm
In this approach, we start by comparing the digits on the opposite ends of the given string. If they are equal, we move towards the center of the string. If they are not equal, we replace the smaller digit with the larger one to make the string a palindrome. We count the number of such replacements and stop when the number of replacements exceeds K or the string becomes a palindrome. If the number of replacements is less than K, we continue replacing digits with the largest ones until we reach the center of the string.
Here is the C++ code for this approach:
C++
#include <iostream> #include <string> using namespace std; string makePalindrome(string s, int k) { int n = s.length(); int replacements = 0; for ( int i = 0, j = n - 1; i < j; i++, j--) { if (s[i] != s[j]) { if (s[i] > s[j]) { s[j] = s[i]; } else { s[i] = s[j]; } replacements++; if (replacements > k) { return "-1" ; } } } for ( int i = 0, j = n - 1; i <= j; i++, j--) { if (i == j && replacements < k) { s[i] = '9' ; } if (s[i] != '9' ) { if (replacements < k && (i == 0 || i == j)) { s[i] = s[j] = '9' ; replacements++; } else if (replacements <= k - 2) { s[i] = s[j] = '9' ; replacements += 2; } } } return s; } int main() { string s = "43435" ; int k=3; cout << makePalindrome(s, k) << endl; return 0; } |
The time complexity of the first approach is O(N^2), where N is the length of the string, because we are using two nested loops to compare every pair of characters in the string.
The space complexity is O(N), because we are creating a new string of length N to store the modified palindrome.
This article is contributed by Utkarsh Trivedi. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...