Make all array elements even by replacing any pair of array elements with their sum
Given an array arr[] consisting of N positive integers, the task is to make all array elements even by replacing any pair of array elements with their sum.
Examples:
Input: arr[] = {5, 6, 3, 7, 20}
Output: 3
Explanation:
Operation 1: Replace arr[0] and arr[2] by their sum ( = 5 + 3 = 8) modifies arr[] to {8, 6, 8, 7, 20}.
Operation 2: Replace arr[2] and arr[3] by their sum ( = 7 + 8 = 15) modifies arr[] to {8, 6, 15, 15, 20}.
Operation 3: Replace arr[2] and arr[3] by their sum ( = 15 + 15 = 30) modifies arr[] to {8, 6, 30, 30, 20}.Input: arr[] = {2, 4, 16, 8, 7, 9, 3, 1}
Output: 2
Approach: The idea is to keep replacing two odd array elements by their sum until all array elements are even. Follow the steps below to solve the problem:
- Initialize a variable, say moves, to store the minimum number of replacements required.
- Calculate the total number of odd elements present in the given array and store it in a variable, say cnt.
- If the value of cnt is odd, then print (cnt / 2 + 2) as the result. Otherwise, print cnt / 2 as the result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the minimum number // of replacements required to make // all array elements even void minMoves( int arr[], int N) { // Stores the count of odd elements int odd_element_cnt = 0; // Traverse the array for ( int i = 0; i < N; i++) { // Increase count of odd elements if (arr[i] % 2 != 0) { odd_element_cnt++; } } // Store number of replacements required int moves = (odd_element_cnt) / 2; // Two extra moves will be required // to make the last odd element even if (odd_element_cnt % 2 != 0) moves += 2; // Print the minimum replacements cout << moves; } // Driver Code int main() { int arr[] = { 5, 6, 3, 7, 20 }; int N = sizeof (arr) / sizeof (arr[0]); // Function call minMoves(arr, N); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find the minimum number // of replacements required to make // all array elements even static void minMoves( int arr[], int N) { // Stores the count of odd elements int odd_element_cnt = 0 ; // Traverse the array for ( int i = 0 ; i < N; i++) { // Increase count of odd elements if (arr[i] % 2 != 0 ) { odd_element_cnt++; } } // Store number of replacements required int moves = (odd_element_cnt) / 2 ; // Two extra moves will be required // to make the last odd element even if (odd_element_cnt % 2 != 0 ) moves += 2 ; // Print the minimum replacements System.out.print(moves); } // Driver Code public static void main(String[] args) { int arr[] = { 5 , 6 , 3 , 7 , 20 }; int N = arr.length; // Function call minMoves(arr, N); } } // This code is contributed by shikhasingrajput |
C#
// C# program for the above approach using System; public class GFG { // Function to find the minimum number // of replacements required to make // all array elements even static void minMoves( int []arr, int N) { // Stores the count of odd elements int odd_element_cnt = 0; // Traverse the array for ( int i = 0; i < N; i++) { // Increase count of odd elements if (arr[i] % 2 != 0) { odd_element_cnt++; } } // Store number of replacements required int moves = (odd_element_cnt) / 2; // Two extra moves will be required // to make the last odd element even if (odd_element_cnt % 2 != 0) moves += 2; // Print the minimum replacements Console.Write(moves); } // Driver Code public static void Main(String[] args) { int []arr = { 5, 6, 3, 7, 20 }; int N = arr.Length; // Function call minMoves(arr, N); } } // This code is contributed by 29AjayKumar |
Python3
# Python program for the above approach # Function to find the minimum number # of replacements required to make # all array elements even def minMoves(arr, N): # Stores the count of odd elements odd_element_cnt = 0 ; # Traverse the array for i in range (N): # Increase count of odd elements if (arr[i] % 2 ! = 0 ): odd_element_cnt + = 1 ; # Store number of replacements required moves = (odd_element_cnt) / / 2 ; # Two extra moves will be required # to make the last odd element even if (odd_element_cnt % 2 ! = 0 ): moves + = 2 ; # Print the minimum replacements print (moves); # Driver Code if __name__ = = '__main__' : arr = [ 5 , 6 , 3 , 7 , 20 ]; N = len (arr); # Function call minMoves(arr, N); # This code is contributed by 29AjayKumar |
Javascript
<script> // javascript program for the above approach // Function to find the minimum number // of replacements required to make // all array elements even function minMoves(arr, N) { // Stores the count of odd elements var odd_element_cnt = 0; var i; // Traverse the array for (i = 0; i < N; i++) { // Increase count of odd elements if (arr[i] % 2 != 0) { odd_element_cnt++; } } // Store number of replacements required var moves = Math.floor((odd_element_cnt)/2); // Two extra moves will be required // to make the last odd element even if (odd_element_cnt % 2 != 0) moves += 2; // Print the minimum replacements document.write(moves); } // Driver Code var arr = [5, 6, 3, 7, 20]; N = arr.length; // Function call minMoves(arr, N); </script> |
3
Time complexity: O(N)
Auxiliary Space: O(1)
Please Login to comment...