Longest unique subarray of an Array with maximum sum in another Array
Given two arrays X[] and Y[] of size N, the task is to find the longest subarray in X[] containing only unique values such that a subarray with similar indices in Y[] should have a maximum sum. The value of array elements is in the range [0, 1000].
Examples:
Input: N = 5,
X[] = {0, 1, 2, 0, 2},
Y[] = {5, 6, 7, 8, 22}
Output: 21
Explanation: The largest unique subarray in X[] with maximum sum in Y[] is {1, 2, 0}.
So, the subarray with same indices in Y[] is {6, 7, 8}.
Therefore maximum sum is 21.Input: N = 3,
X[] = {1, 1, 1},
Y[] = {2, 6, 7}
Output: 7
Naive Approach: The task can be solved by generating all the subarrays of the array X[], checking for each subarray if it is valid, and then calculating the sum in the array for corresponding indices in Y.
Time Complexity: O(N3)
Auxiliary Space: O(N)
Efficient Approach: The task can be solved using the concept of the sliding window. Follow the below steps to solve the problem:
- Create an array m of size 1001 and initialize all elements as -1. For index i, m[i] stores the index at which i is present in the subarray. If m[i] is -1, it means the element doesn’t exist in the subarray.
- Initialize low = 0, high = 0, these two pointers will define the indices of the current subarray.
- currSum and maxSum, define the sum of the current subarray and the maximum sum in the array.
- Iterate over a loop and check if the current element at index high exists in the subarray already, if it does find the sum of elements in the subarray, update maxSum (if needed) and update low. Now, finally, move to the next element by incrementing high.
- Note that you will be encountering a corner case which can result in wrong answer, for instance, let’s consider our first Input, then the subarray {8, 2} is the right choice and 30 is our right answer. So handle that corner case separately by summing all elements from the previous low to high.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the max sum int findMaxSumSubarray( int X[], int Y[], int N) { // Array to store the elements // and their indices int m[1001]; // Initialize all elements as -1 for ( int i = 0; i < 1001; i++) m[i] = -1; // low and high represent // beginning and end of subarray int low = 0, high = 0; int currSum = 0, maxSum = 0; // Iterate through the array // Note that the array is traversed till high <= N // so that the corner case can be handled while (high <= N) { if (high==N){ //Calculate the currSum for the subarray //after the last updated low to high-1 currSum=0; for ( int i = low; i <= high - 1; i++) currSum += Y[i]; // Find the maximum sum maxSum = max(maxSum, currSum); break ; } // If the current element already // exists in the current subarray if (m[X[high]] != -1 && m[X[high]] >= low) { currSum = 0; // Calculate the sum // of current subarray for ( int i = low; i <= high - 1; i++) currSum += Y[i]; // Find the maximum sum maxSum = max(maxSum, currSum); // Starting index of new subarray low = m[X[high]] + 1; } // Keep expanding the subarray // and mark the index m[X[high]] = high; high++; } // Return the maxSum return maxSum; } // Driver code int main() { int X[] = { 0, 1, 2, 0, 2 }; int Y[] = { 5, 6, 7, 8, 22 }; int N = sizeof (X) / sizeof (X[0]); // Function call to find the sum int maxSum = findMaxSumSubarray(X, Y, N); // Print the result cout << maxSum << endl; return 0; } |
Java
// Java program for the above approach import java.util.*; public class GFG { // Function to find the max sum static int findMaxSumSubarray( int X[], int Y[], int N) { // Array to store the elements // and their indices int m[] = new int [ 1001 ]; // Initialize all elements as -1 for ( int i = 0 ; i < 1001 ; i++) m[i] = - 1 ; // low and high represent // beginning and end of subarray int low = 0 , high = 0 ; int currSum = 0 , maxSum = 0 ; // Iterate through the array // Note that the array is traversed till high <= N // so that the corner case can be handled while (high <= N) { if (high==N){ // Calculate the currSum for the subarray // after the last updated low to high-1 currSum = 0 ; for ( int i = low; i <= high - 1 ;i++) currSum += Y[i]; // Find the maximum sum maxSum = Math.max(maxSum, currSum); break ; } // If the current element already // exists in the current subarray if (m[X[high]] != - 1 && m[X[high]] >= low) { currSum = 0 ; // Calculate the sum // of current subarray for ( int i = low; i <= high - 1 ; i++) currSum += Y[i]; // Find the maximum sum maxSum = Math.max(maxSum, currSum); // Starting index of new subarray low = m[X[high]] + 1 ; } // Keep expanding the subarray // and mark the index m[X[high]] = high; high++; } // Return the maxSum return maxSum; } // Driver code public static void main(String args[]) { int X[] = { 0 , 1 , 2 , 0 , 2 }; int Y[] = { 5 , 6 , 7 , 8 , 22 }; int N = X.length; // Function call to find the sum int maxSum = findMaxSumSubarray(X, Y, N); // Print the result System.out.println(maxSum); } } // This code is contributed by Samim Hossain Mondal. |
Python3
# Python code for the above approach # Function to find the max sum def findMaxSumSubarray(X, Y, N): # Array to store the elements # and their indices m = [ 0 ] * ( 1001 ); # Initialize all elements as -1 for i in range ( 1001 ): m[i] = - 1 ; # low and high represent # beginning and end of subarray low = 0 high = 0 currSum = 0 maxSum = 0 ; # Iterate through the array # Note that the array is traversed till high <= N # so that the corner case can be handled while (high < = N): if (high = = N): currSum = 0 ; # Calculate the currSum for the subarray # after the last updated low to high-1 for i in range (low, high): currSum + = Y[i]; maxSum = max (maxSum, currSum); break ; # If the current element already # exists in the current subarray if (m[X[high]] ! = - 1 and m[X[high]] > = low): currSum = 0 ; # Calculate the sum # of current subarray for i in range (low, high): currSum + = Y[i]; # Find the maximum sum maxSum = max (maxSum, currSum); # Starting index of new subarray low = m[X[high]] + 1 ; # Keep expanding the subarray # and mark the index m[X[high]] = high; high + = 1 # Return the maxSum return maxSum; # Driver code X = [ 0 , 1 , 2 , 0 , 2 ]; Y = [ 5 , 6 , 7 , 8 , 22 ]; N = len (X) # Function call to find the sum maxSum = findMaxSumSubarray(X, Y, N); # Print the result print (maxSum, end = "") # This code is contributed by Saurabh Jaiswal |
C#
// C# program for above approach using System; using System.Collections.Generic; public class GFG{ // Function to find the max sum static int findMaxSumSubarray( int [] X, int [] Y, int N) { // Array to store the elements // and their indices int [] m = new int [1001]; // Initialize all elements as -1 for ( int i = 0; i < 1001; i++) m[i] = -1; // low and high represent // beginning and end of subarray int low = 0, high = 0; int currSum = 0, maxSum = 0; // Iterate through the array // Note that the array is traversed till high <= N // so that the corner case can be handled while (high <= N) { if (high==N){ // Calculate the currSum for the subarray // after the last updated low to high-1 currSum=0; for ( int i = low; i <= high - 1; i++) currSum += Y[i]; // Find the maximum sum maxSum = Math.Max(maxSum, currSum); break ; } // If the current element already // exists in the current subarray if (m[X[high]] != -1 && m[X[high]] >= low) { currSum = 0; // Calculate the sum // of current subarray for ( int i = low; i <= high - 1; i++) currSum += Y[i]; // Find the maximum sum maxSum = Math.Max(maxSum, currSum); // Starting index of new subarray low = m[X[high]] + 1; } // Keep expanding the subarray // and mark the index m[X[high]] = high; high++; } // Return the maxSum return maxSum; } // Driver code static public void Main () { int [] X = { 0, 1, 2, 0, 2 }; int [] Y = { 5, 6, 7, 8, 22 }; int N = X.Length; // Function call to find the sum int maxSum = findMaxSumSubarray(X, Y, N); // Print the result Console.WriteLine(maxSum); } } // This code is contributed by hrithikgarg03188. |
Javascript
<script> // JavaScript code for the above approach // Function to find the max sum function findMaxSumSubarray(X, Y, N) { // Array to store the elements // and their indices let m = new Array(1001); // Initialize all elements as -1 for (let i = 0; i < 1001; i++) m[i] = -1; // low and high represent // beginning and end of subarray let low = 0, high = 0; let currSum = 0, maxSum = 0; // Iterate through the array // Note that the array is traversed till high <= N // so that the corner case can be handled while (high <= N) { if (high==N){ // Calculate the currSum for the subarray // after the last updated low to high-1 currSum=0; for (let i = low; i <= high - 1; i++) currSum += Y[i]; // Find the maximum sum maxSum = Math.max(maxSum, currSum); break ; } // If the current element already // exists in the current subarray if (m[X[high]] != -1 && m[X[high]] >= low) { currSum = 0; // Calculate the sum // of current subarray for (let i = low; i <= high - 1; i++) currSum += Y[i]; // Find the maximum sum maxSum = Math.max(maxSum, currSum); // Starting index of new subarray low = m[X[high]] + 1; } // Keep expanding the subarray // and mark the index m[X[high]] = high; high++; } // Return the maxSum return maxSum; } // Driver code let X = [0, 1, 2, 0, 2]; let Y = [5, 6, 7, 8, 22]; let N = X.length // Function call to find the sum let maxSum = findMaxSumSubarray(X, Y, N); // Print the result document.write(maxSum + '<br>' ) // This code is contributed by Potta Lokesh </script> |
30
Time Complexity: O(N)
Auxiliary Space: O(N)
Please Login to comment...