Longest subsequence with consecutive English alphabets
Given string S, the task is to find the length of the longest subsequence of the consecutive lowercase alphabets.
Examples:
Input: S = “acbdcfhg”
Output: 3
Explanation:
String “abc” is the longest subsequence of consecutive lowercase alphabets.
Therefore, print 3 as it is the length of the subsequence “abc”.Input: S = “gabbsdcdggbe”
Output: 5
Naive Approach: The simplest approach is to generate all possible subsequences of the given string and if there exists any subsequence of the given string that has consecutive characters and is of maximum length then print that length.
Time Complexity: O(2N)
Auxiliary Space: O(1)
Efficient Approach: The above approach can also be optimized by generating all possible consecutive subsequences of the given string starting from each lowercase alphabets and print the maximum among all the subsequence found. Follow the steps below to solve the problem:
- Initialize a variable, say ans, as 0 that stores the maximum length of the consecutive subsequence.
- For each character ch over the range [a, z] perform the following:
- Initialize a variable cnt as 0 that stores the length of a subsequence of consecutive characters starting from ch.
- Traverse the given string S and if the current character is ch then increment the cnt by 1 and update the current character ch to the next character by (ch + 1).
- Update ans = max(ans, cnt)
- After the above steps, print the value of ans as the result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the length of subsequence // starting with character ch int findSubsequence(string S, char ch) { // Length of the string int N = S.length(); // Stores the maximum length int ans = 0; // Traverse the given string for ( int i = 0; i < N; i++) { // If s[i] is required // character ch if (S[i] == ch) { // Increment ans by 1 ans++; // Increment character ch ch++; } } // Return the current maximum // length with character ch return ans; } // Function to find the maximum length // of subsequence of consecutive // characters int findMaxSubsequence(string S) { // Stores the maximum length of // consecutive characters int ans = 0; for ( char ch = 'a' ; ch <= 'z' ; ch++) { // Update ans ans = max(ans, findSubsequence(S, ch)); } // Return the maximum length of // subsequence return ans; } // Driver Code int main() { // Input string S = "abcabefghijk" ; // Function Call cout << findMaxSubsequence(S); return 0; } |
Java
// C# program for the above approach import java.io.*; import java.util.*; import java.util.Arrays; class GFG{ // Function to find the length of subsequence // starting with character ch static int findSubsequence(String S, char ch) { // Length of the string int N = S.length(); // Stores the maximum length int ans = 0 ; // Traverse the given string for ( int i = 0 ; i < N; i++) { // If s[i] is required // character ch if (S.charAt(i) == ch) { // Increment ans by 1 ans++; // Increment character ch ch++; } } // Return the current maximum // length with character ch return ans; } // Function to find the maximum length // of subsequence of consecutive // characters static int findMaxSubsequence(String S) { // Stores the maximum length of // consecutive characters int ans = 0 ; for ( char ch = 'a' ; ch <= 'z' ; ch++) { // Update ans ans = Math.max(ans, findSubsequence(S, ch)); } // Return the maximum length of // subsequence return ans; } // Driver Code public static void main(String[] args) { // Input String S = "abcabefghijk" ; // Function Call System.out.print(findMaxSubsequence(S)); } } // This code is contributed by shivanisinghss2110 |
Python3
# Python3 program for the above approach # Function to find the length of subsequence # starting with character ch def findSubsequence(S, ch): # Length of the string N = len (S) # Stores the maximum length ans = 0 # Traverse the given string for i in range (N): # If s[i] is required # character ch if (S[i] = = ch): # Increment ans by 1 ans + = 1 # Increment character ch ch = chr ( ord (ch) + 1 ) # Return the current maximum # length with character ch return ans # Function to find the maximum length # of subsequence of consecutive # characters def findMaxSubsequence(S): #Stores the maximum length of # consecutive characters ans = 0 for ch in range ( ord ( 'a' ), ord ( 'z' ) + 1 ): # Update ans ans = max (ans, findSubsequence(S, chr (ch))) # Return the maximum length of # subsequence return ans # Driver Code if __name__ = = '__main__' : # Input S = "abcabefghijk" # Function Call print (findMaxSubsequence(S)) # This code is contributed by mohit kumar 29. |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ // Function to find the length of subsequence // starting with character ch static int findSubsequence( string S, char ch) { // Length of the string int N = S.Length; // Stores the maximum length int ans = 0; // Traverse the given string for ( int i = 0; i < N; i++) { // If s[i] is required // character ch if (S[i] == ch) { // Increment ans by 1 ans++; // Increment character ch ch++; } } // Return the current maximum // length with character ch return ans; } // Function to find the maximum length // of subsequence of consecutive // characters static int findMaxSubsequence( string S) { // Stores the maximum length of // consecutive characters int ans = 0; for ( char ch = 'a' ; ch <= 'z' ; ch++) { // Update ans ans = Math.Max(ans, findSubsequence(S, ch)); } // Return the maximum length of // subsequence return ans; } // Driver Code public static void Main() { // Input string S = "abcabefghijk" ; // Function Call Console.Write(findMaxSubsequence(S)); } } // This code is contributed by SURENDRA_GANGWAR |
Javascript
<script> // Javascript program for the above approach // Function to find the length of subsequence // starting with character ch function findSubsequence(S,ch) { // Length of the string let N = S.length; // Stores the maximum length let ans = 0; // Traverse the given string for (let i = 0; i < N; i++) { // If s[i] is required // character ch if (S[i] == ch) { // Increment ans by 1 ans++; // Increment character ch ch=String.fromCharCode(ch.charCodeAt(0)+1); } } // Return the current maximum // length with character ch return ans; } // Function to find the maximum length // of subsequence of consecutive // characters function findMaxSubsequence(S) { // Stores the maximum length of // consecutive characters let ans = 0; for (let ch = 'a' .charCodeAt(0); ch <= 'z' .charCodeAt(0); ch++) { // Update ans ans = Math.max(ans, findSubsequence(S, String.fromCharCode(ch))); } // Return the maximum length of // subsequence return ans; } // Driver Code let S = "abcabefghijk" ; // Function Call document.write(findMaxSubsequence(S)); // This code is contributed by patel2127 </script> |
7
Time Complexity: O(26*N)
Auxiliary Space: O(1)
Please Login to comment...