Longest alternating subsequence
A sequence {X1, X2, .. Xn} is an alternating sequence if its elements satisfy one of the following relations :
X1 < X2 > X3 < X4 > X5 < …. xn or
X1 > X2 < X3 > X4 < X5 > …. xn
Examples:
Input: arr[] = {1, 5, 4}
Output: 3
Explanation: The whole arrays is of the form x1 < x2 > x3Input: arr[] = {10, 22, 9, 33, 49, 50, 31, 60}
Output: 6
Explanation: The subsequences {10, 22, 9, 33, 31, 60} or
{10, 22, 9, 49, 31, 60} or {10, 22, 9, 50, 31, 60}
are longest subsequence of length 6
Note: This problem is an extension of the longest increasing subsequence problem, but requires more thinking for finding optimal substructure property in this
Longest alternating subsequence using dynamic programming:
To solve the problem follow the below idea:
We will solve this problem by dynamic Programming method, as it has optimal substructure and overlapping subproblems
Follow the below steps to solve the problem:
- Let A is given an array of length N
- We define a 2D array las[n][2] such that las[i][0] contains the longest alternating subsequence ending at index i and the last element is greater than its previous element
- las[i][1] contains the longest alternating subsequence ending at index i and the last element is smaller than its previous element, then we have the following recurrence relation between them,
las[i][0] = Length of the longest alternating subsequence
ending at index i and last element is greater
than its previous elementlas[i][1] = Length of the longest alternating subsequence
ending at index i and last element is smaller
than its previous elementRecursive Formulation:
las[i][0] = max (las[i][0], las[j][1] + 1);
for all j < i and A[j] < A[i]las[i][1] = max (las[i][1], las[j][0] + 1);
for all j < i and A[j] > A[i]
- The first recurrence relation is based on the fact that, If we are at position i and this element has to be bigger than its previous element then for this sequence (upto i) to be bigger we will try to choose an element j ( < i) such that A[j] < A[i] i.e. A[j] can become A[i]’s previous element and las[j][1] + 1 is bigger than las[i][0] then we will update las[i][0].
- Remember we have chosen las[j][1] + 1 not las[j][0] + 1 to satisfy the alternate property because in las[j][0] the last element is bigger than its previous one and A[i] is greater than A[j] which will break the alternating property if we update. So above fact derives the first recurrence relation, a similar argument can be made for the second recurrence relation also.
Below is the implementation of the above approach:
C++
// C++ program to find longest alternating // subsequence in an array #include <bits/stdc++.h> using namespace std; // Function to return max of two numbers int max( int a, int b) { return (a > b) ? a : b; } // Function to return longest alternating // subsequence length int zzis( int arr[], int n) { /*las[i][0] = Length of the longest alternating subsequence ending at index i and last element is greater than its previous element las[i][1] = Length of the longest alternating subsequence ending at index i and last element is smaller than its previous element */ int las[n][2]; // Initialize all values from 1 for ( int i = 0; i < n; i++) las[i][0] = las[i][1] = 1; // Initialize result int res = 1; // Compute values in bottom up manner for ( int i = 1; i < n; i++) { // Consider all elements as // previous of arr[i] for ( int j = 0; j < i; j++) { // If arr[i] is greater, then // check with las[j][1] if (arr[j] < arr[i] && las[i][0] < las[j][1] + 1) las[i][0] = las[j][1] + 1; // If arr[i] is smaller, then // check with las[j][0] if (arr[j] > arr[i] && las[i][1] < las[j][0] + 1) las[i][1] = las[j][0] + 1; } // Pick maximum of both values at index i if (res < max(las[i][0], las[i][1])) res = max(las[i][0], las[i][1]); } return res; } // Driver code int main() { int arr[] = { 10, 22, 9, 33, 49, 50, 31, 60 }; int n = sizeof (arr) / sizeof (arr[0]); cout << "Length of Longest alternating " << "subsequence is " << zzis(arr, n); return 0; } // This code is contributed by shivanisinghss2110 |
C
// C program to find longest alternating subsequence in // an array #include <stdio.h> #include <stdlib.h> // function to return max of two numbers int max( int a, int b) { return (a > b) ? a : b; } // Function to return longest alternating subsequence length int zzis( int arr[], int n) { /*las[i][0] = Length of the longest alternating subsequence ending at index i and last element is greater than its previous element las[i][1] = Length of the longest alternating subsequence ending at index i and last element is smaller than its previous element */ int las[n][2]; /* Initialize all values from 1 */ for ( int i = 0; i < n; i++) las[i][0] = las[i][1] = 1; int res = 1; // Initialize result /* Compute values in bottom up manner */ for ( int i = 1; i < n; i++) { // Consider all elements as previous of arr[i] for ( int j = 0; j < i; j++) { // If arr[i] is greater, then check with // las[j][1] if (arr[j] < arr[i] && las[i][0] < las[j][1] + 1) las[i][0] = las[j][1] + 1; // If arr[i] is smaller, then check with // las[j][0] if (arr[j] > arr[i] && las[i][1] < las[j][0] + 1) las[i][1] = las[j][0] + 1; } /* Pick maximum of both values at index i */ if (res < max(las[i][0], las[i][1])) res = max(las[i][0], las[i][1]); } return res; } /* Driver code */ int main() { int arr[] = { 10, 22, 9, 33, 49, 50, 31, 60 }; int n = sizeof (arr) / sizeof (arr[0]); printf ( "Length of Longest alternating subsequence is %d\n" , zzis(arr, n)); return 0; } |
Java
// Java program to find longest // alternating subsequence in an array import java.io.*; class GFG { // Function to return longest // alternating subsequence length static int zzis( int arr[], int n) { /*las[i][0] = Length of the longest alternating subsequence ending at index i and last element is greater than its previous element las[i][1] = Length of the longest alternating subsequence ending at index i and last element is smaller than its previous element */ int las[][] = new int [n][ 2 ]; /* Initialize all values from 1 */ for ( int i = 0 ; i < n; i++) las[i][ 0 ] = las[i][ 1 ] = 1 ; int res = 1 ; // Initialize result /* Compute values in bottom up manner */ for ( int i = 1 ; i < n; i++) { // Consider all elements as // previous of arr[i] for ( int j = 0 ; j < i; j++) { // If arr[i] is greater, then // check with las[j][1] if (arr[j] < arr[i] && las[i][ 0 ] < las[j][ 1 ] + 1 ) las[i][ 0 ] = las[j][ 1 ] + 1 ; // If arr[i] is smaller, then // check with las[j][0] if (arr[j] > arr[i] && las[i][ 1 ] < las[j][ 0 ] + 1 ) las[i][ 1 ] = las[j][ 0 ] + 1 ; } /* Pick maximum of both values at index i */ if (res < Math.max(las[i][ 0 ], las[i][ 1 ])) res = Math.max(las[i][ 0 ], las[i][ 1 ]); } return res; } /* Driver code*/ public static void main(String[] args) { int arr[] = { 10 , 22 , 9 , 33 , 49 , 50 , 31 , 60 }; int n = arr.length; System.out.println( "Length of Longest " + "alternating subsequence is " + zzis(arr, n)); } } // This code is contributed by Prerna Saini |
Python3
# Python3 program to find longest # alternating subsequence in an array # Function to return max of two numbers def Max (a, b): if a > b: return a else : return b # Function to return longest alternating # subsequence length def zzis(arr, n): """las[i][0] = Length of the longest alternating subsequence ending at index i and last element is greater than its previous element las[i][1] = Length of the longest alternating subsequence ending at index i and last element is smaller than its previous element""" las = [[ 0 for i in range ( 2 )] for j in range (n)] # Initialize all values from 1 for i in range (n): las[i][ 0 ], las[i][ 1 ] = 1 , 1 # Initialize result res = 1 # Compute values in bottom up manner for i in range ( 1 , n): # Consider all elements as # previous of arr[i] for j in range ( 0 , i): # If arr[i] is greater, then # check with las[j][1] if (arr[j] < arr[i] and las[i][ 0 ] < las[j][ 1 ] + 1 ): las[i][ 0 ] = las[j][ 1 ] + 1 # If arr[i] is smaller, then # check with las[j][0] if (arr[j] > arr[i] and las[i][ 1 ] < las[j][ 0 ] + 1 ): las[i][ 1 ] = las[j][ 0 ] + 1 # Pick maximum of both values at index i if (res < max (las[i][ 0 ], las[i][ 1 ])): res = max (las[i][ 0 ], las[i][ 1 ]) return res # Driver Code arr = [ 10 , 22 , 9 , 33 , 49 , 50 , 31 , 60 ] n = len (arr) print ( "Length of Longest alternating subsequence is" , zzis(arr, n)) # This code is contributed by divyesh072019 |
C#
// C# program to find longest // alternating subsequence // in an array using System; class GFG { // Function to return longest // alternating subsequence length static int zzis( int [] arr, int n) { /*las[i][0] = Length of the longest alternating subsequence ending at index i and last element is greater than its previous element las[i][1] = Length of the longest alternating subsequence ending at index i and last element is smaller than its previous element */ int [, ] las = new int [n, 2]; /* Initialize all values from 1 */ for ( int i = 0; i < n; i++) las[i, 0] = las[i, 1] = 1; // Initialize result int res = 1; /* Compute values in bottom up manner */ for ( int i = 1; i < n; i++) { // Consider all elements as // previous of arr[i] for ( int j = 0; j < i; j++) { // If arr[i] is greater, then // check with las[j][1] if (arr[j] < arr[i] && las[i, 0] < las[j, 1] + 1) las[i, 0] = las[j, 1] + 1; // If arr[i] is smaller, then // check with las[j][0] if (arr[j] > arr[i] && las[i, 1] < las[j, 0] + 1) las[i, 1] = las[j, 0] + 1; } /* Pick maximum of both values at index i */ if (res < Math.Max(las[i, 0], las[i, 1])) res = Math.Max(las[i, 0], las[i, 1]); } return res; } // Driver Code public static void Main() { int [] arr = { 10, 22, 9, 33, 49, 50, 31, 60 }; int n = arr.Length; Console.WriteLine( "Length of Longest " + "alternating subsequence is " + zzis(arr, n)); } } // This code is contributed by anuj_67. |
PHP
<?php // PHP program to find longest // alternating subsequence in // an array // Function to return longest // alternating subsequence length function zzis( $arr , $n ) { /*las[i][0] = Length of the longest alternating subsequence ending at index i and last element is greater than its previous element las[i][1] = Length of the longest alternating subsequence ending at index i and last element is smaller than its previous element */ $las = array ( array ()); /* Initialize all values from 1 */ for ( $i = 0; $i < $n ; $i ++) $las [ $i ][0] = $las [ $i ][1] = 1; $res = 1; // Initialize result /* Compute values in bottom up manner */ for ( $i = 1; $i < $n ; $i ++) { // Consider all elements // as previous of arr[i] for ( $j = 0; $j < $i ; $j ++) { // If arr[i] is greater, then // check with las[j][1] if ( $arr [ $j ] < $arr [ $i ] and $las [ $i ][0] < $las [ $j ][1] + 1) $las [ $i ][0] = $las [ $j ][1] + 1; // If arr[i] is smaller, then // check with las[j][0] if ( $arr [ $j ] > $arr [ $i ] and $las [ $i ][1] < $las [ $j ][0] + 1) $las [ $i ][1] = $las [ $j ][0] + 1; } /* Pick maximum of both values at index i */ if ( $res < max( $las [ $i ][0], $las [ $i ][1])) $res = max( $las [ $i ][0], $las [ $i ][1]); } return $res ; } // Driver Code $arr = array (10, 22, 9, 33, 49, 50, 31, 60 ); $n = count ( $arr ); echo "Length of Longest alternating " . "subsequence is " , zzis( $arr , $n ) ; // This code is contributed by anuj_67. ?> |
Javascript
<script> // Javascript program to find longest // alternating subsequence in an array // Function to return longest // alternating subsequence length function zzis(arr, n) { /*las[i][0] = Length of the longest alternating subsequence ending at index i and last element is greater than its previous element las[i][1] = Length of the longest alternating subsequence ending at index i and last element is smaller than its previous element */ let las = new Array(n); for (let i = 0; i < n; i++) { las[i] = new Array(2); for (let j = 0; j < 2; j++) { las[i][j] = 0; } } /* Initialize all values from 1 */ for (let i = 0; i < n; i++) las[i][0] = las[i][1] = 1; let res = 1; // Initialize result /* Compute values in bottom up manner */ for (let i = 1; i < n; i++) { // Consider all elements as // previous of arr[i] for (let j = 0; j < i; j++) { // If arr[i] is greater, then // check with las[j][1] if (arr[j] < arr[i] && las[i][0] < las[j][1] + 1) las[i][0] = las[j][1] + 1; // If arr[i] is smaller, then // check with las[j][0] if ( arr[j] > arr[i] && las[i][1] < las[j][0] + 1) las[i][1] = las[j][0] + 1; } /* Pick maximum of both values at index i */ if (res < Math.max(las[i][0], las[i][1])) res = Math.max(las[i][0], las[i][1]); } return res; } let arr = [ 10, 22, 9, 33, 49, 50, 31, 60 ]; let n = arr.length; document.write( "Length of Longest " + "alternating subsequence is " + zzis(arr, n)); // This code is contributed by rameshtravel07. </script> |
Length of Longest alternating subsequence is 6
Time Complexity: O(N2)
Auxiliary Space: O(N), since N extra space has been taken
Efficient Approach: To solve the problem follow the below idea:
In the above approach, at any moment we are keeping track of two values (The length of the longest alternating subsequence ending at index i, and the last element is smaller than or greater than the previous element), for every element on the array. To optimize space, we only need to store two variables for element at any index i
inc = Length of longest alternative subsequence so far with current value being greater than it’s previous value.
dec = Length of longest alternative subsequence so far with current value being smaller than it’s previous value.
The tricky part of this approach is to update these two values.“inc” should be increased, if and only if the last element in the alternative sequence was smaller than it’s previous element.
“dec” should be increased, if and only if the last element in the alternative sequence was greater than it’s previous element.
Follow the below steps to solve the problem:
- Declare two integers inc and dec equal to one
- Run a loop for i [1, N-1]
- If arr[i] is greater than the previous element then set inc equal to dec + 1
- Else if arr[i] is smaller than the previous element then set dec equal to inc + 1
- Return maximum of inc and dec
Below is the implementation of the above approach:
C++
// C++ program for above approach #include <bits/stdc++.h> using namespace std; // Function for finding // longest alternating // subsequence int LAS( int arr[], int n) { // "inc" and "dec" initialized as 1 // as single element is still LAS int inc = 1; int dec = 1; // Iterate from second element for ( int i = 1; i < n; i++) { if (arr[i] > arr[i - 1]) { // "inc" changes if "dec" // changes inc = dec + 1; } else if (arr[i] < arr[i - 1]) { // "dec" changes if "inc" // changes dec = inc + 1; } } // Return the maximum length return max(inc, dec); } // Driver Code int main() { int arr[] = { 10, 22, 9, 33, 49, 50, 31, 60 }; int n = sizeof (arr) / sizeof (arr[0]); // Function Call cout << LAS(arr, n) << endl; return 0; } |
Java
// Java Program for above approach public class GFG { // Function for finding // longest alternating // subsequence static int LAS( int [] arr, int n) { // "inc" and "dec" initialized as 1, // as single element is still LAS int inc = 1 ; int dec = 1 ; // Iterate from second element for ( int i = 1 ; i < n; i++) { if (arr[i] > arr[i - 1 ]) { // "inc" changes if "dec" // changes inc = dec + 1 ; } else if (arr[i] < arr[i - 1 ]) { // "dec" changes if "inc" // changes dec = inc + 1 ; } } // Return the maximum length return Math.max(inc, dec); } // Driver Code public static void main(String[] args) { int [] arr = { 10 , 22 , 9 , 33 , 49 , 50 , 31 , 60 }; int n = arr.length; // Function Call System.out.println(LAS(arr, n)); } } |
Python3
# Python3 program for above approach def LAS(arr, n): # "inc" and "dec" initialized as 1 # as single element is still LAS inc = 1 dec = 1 # Iterate from second element for i in range ( 1 , n): if (arr[i] > arr[i - 1 ]): # "inc" changes if "dec" # changes inc = dec + 1 elif (arr[i] < arr[i - 1 ]): # "dec" changes if "inc" # changes dec = inc + 1 # Return the maximum length return max (inc, dec) # Driver Code if __name__ = = "__main__" : arr = [ 10 , 22 , 9 , 33 , 49 , 50 , 31 , 60 ] n = len (arr) # Function Call print (LAS(arr, n)) |
C#
// C# program for above approach using System; class GFG { // Function for finding // longest alternating // subsequence static int LAS( int [] arr, int n) { // "inc" and "dec" initialized as 1, // as single element is still LAS int inc = 1; int dec = 1; // Iterate from second element for ( int i = 1; i < n; i++) { if (arr[i] > arr[i - 1]) { // "inc" changes if "dec" // changes inc = dec + 1; } else if (arr[i] < arr[i - 1]) { // "dec" changes if "inc" // changes dec = inc + 1; } } // Return the maximum length return Math.Max(inc, dec); } // Driver code static void Main() { int [] arr = { 10, 22, 9, 33, 49, 50, 31, 60 }; int n = arr.Length; // Function Call Console.WriteLine(LAS(arr, n)); } } // This code is contributed by divyeshrabadiya07 |
Javascript
<script> // Javascript program for above approach // Function for finding // longest alternating // subsequence function LAS(arr, n) { // "inc" and "dec" initialized as 1 // as single element is still LAS let inc = 1; let dec = 1; // Iterate from second element for (let i = 1; i < n; i++) { if (arr[i] > arr[i - 1]) { // "inc" changes if "dec" // changes inc = dec + 1; } else if (arr[i] < arr[i - 1]) { // "dec" changes if "inc" // changes dec = inc + 1; } } // Return the maximum length return Math.max(inc, dec); } let arr = [ 10, 22, 9, 33, 49, 50, 31, 60 ]; let n = arr.length; // Function Call document.write(LAS(arr, n)); // This code is contributed by mukesh07. </script> |
Output:
6
Time Complexity: O(N)
Auxiliary Space: O(1)
This article is contributed by Utkarsh Trivedi. Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above.
Please Login to comment...