Level with maximum number of nodes
Find the level in a binary tree that has the maximum number of nodes. The root is at level 0.
Examples:
Input:
Output : 2 Explanation:
Input:
Output:1 Explanation
Approach: It is known that in level order traversal of binary tree with queue, at any time our queue contains all elements of a particular level. So find level with maximum number of nodes in queue.
BFS traversal is an algorithm for traversing or searching tree or graphs . It starts at the tree root , and explores all of the neighbor nodes at the present depth prior to moving on to the nodes at the next depth level.
So at any point the queue of BFS will contain elements of adjacent layers. So this makes the algorithm perfect for this problem.
Algorithm:
- Create the tree, a queue to store the nodes and insert the root in the queue. Create variables level=0,count =0 and level_no=-1
- The implementation will be slightly different, all the elements of same level will be removed in a single iteration.
- Run a loop while size of queue is greater than 0. Get the size of queue (size) and store it. If size is greater than count then update count = size and level_no = level.
- Now run a loop size times, and pop one node from the queue and insert its childrens (if present).
- Increment level.
Implementation:
C++
// C++ implementation to find the level // having maximum number of Nodes #include <bits/stdc++.h> using namespace std; /* A binary tree Node has data, pointer to left child and a pointer to right child */ struct Node { int data; struct Node* left; struct Node* right; }; /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ struct Node* newNode( int data) { struct Node* node = new Node; node->data = data; node->left = NULL; node->right = NULL; return (node); } // function to find the level // having maximum number of Nodes int maxNodeLevel(Node *root) { if (root == NULL) return -1; queue<Node *> q; q.push(root); // Current level int level = 0; // Maximum Nodes at same level int max = INT_MIN; // Level having maximum Nodes int level_no = 0; while (1) { // Count Nodes in a level int NodeCount = q.size(); if (NodeCount == 0) break ; // If it is maximum till now // Update level_no to current level if (NodeCount > max) { max = NodeCount; level_no = level; } // Pop complete current level while (NodeCount > 0) { Node *Node = q.front(); q.pop(); if (Node->left != NULL) q.push(Node->left); if (Node->right != NULL) q.push(Node->right); NodeCount--; } // Increment for next level level++; } return level_no; } // Driver program to test above int main() { // binary tree formation struct Node *root = newNode(2); /* 2 */ root->left = newNode(1); /* / \ */ root->right = newNode(3); /* 1 3 */ root->left->left = newNode(4); /* / \ \ */ root->left->right = newNode(6); /* 4 6 8 */ root->right->right = newNode(8); /* / */ root->left->right->left = newNode(5); /* 5 */ printf ( "Level having maximum number of Nodes : %d" , maxNodeLevel(root)); return 0; } |
Java
// Java implementation to find the level // having maximum number of Nodes import java.util.*; class GfG { /* A binary tree Node has data, pointer to left child and a pointer to right child */ static class Node { int data; Node left; Node right; } /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = null ; node.right = null ; return (node); } // function to find the level // having maximum number of Nodes static int maxNodeLevel(Node root) { if (root == null ) return - 1 ; Queue<Node> q = new LinkedList<Node> (); q.add(root); // Current level int level = 0 ; // Maximum Nodes at same level int max = Integer.MIN_VALUE; // Level having maximum Nodes int level_no = 0 ; while ( true ) { // Count Nodes in a level int NodeCount = q.size(); if (NodeCount == 0 ) break ; // If it is maximum till now // Update level_no to current level if (NodeCount > max) { max = NodeCount; level_no = level; } // Pop complete current level while (NodeCount > 0 ) { Node Node = q.peek(); q.remove(); if (Node.left != null ) q.add(Node.left); if (Node.right != null ) q.add(Node.right); NodeCount--; } // Increment for next level level++; } return level_no; } // Driver program to test above public static void main(String[] args) { // binary tree formation Node root = newNode( 2 ); /* 2 */ root.left = newNode( 1 ); /* / \ */ root.right = newNode( 3 ); /* 1 3 */ root.left.left = newNode( 4 ); /* / \ \ */ root.left.right = newNode( 6 ); /* 4 6 8 */ root.right.right = newNode( 8 ); /* / */ root.left.right.left = newNode( 5 ); /* 5 */ System.out.println( "Level having maximum number of Nodes : " + maxNodeLevel(root)); } } |
Python3
# Python3 implementation to find the # level having Maximum number of Nodes # Importing Queue from queue import Queue # Helper class that allocates a new # node with the given data and None # left and right pointers. class newNode: def __init__( self , data): self .data = data self .left = None self .right = None # function to find the level # having Maximum number of Nodes def maxNodeLevel(root): if (root = = None ): return - 1 q = Queue() q.put(root) # Current level level = 0 # Maximum Nodes at same level Max = - 999999999999 # Level having Maximum Nodes level_no = 0 while ( 1 ): # Count Nodes in a level NodeCount = q.qsize() if (NodeCount = = 0 ): break # If it is Maximum till now # Update level_no to current level if (NodeCount > Max ): Max = NodeCount level_no = level # Pop complete current level while (NodeCount > 0 ): Node = q.queue[ 0 ] q.get() if (Node.left ! = None ): q.put(Node.left) if (Node.right ! = None ): q.put(Node.right) NodeCount - = 1 # Increment for next level level + = 1 return level_no # Driver Code if __name__ = = '__main__' : # binary tree formation root = newNode( 2 ) # 2 root.left = newNode( 1 ) # / \ root.right = newNode( 3 ) # 1 3 root.left.left = newNode( 4 ) # / \ \ root.left.right = newNode( 6 ) # 4 6 8 root.right.right = newNode( 8 ) # / root.left.right.left = newNode( 5 ) # 5 print ( "Level having Maximum number of Nodes : " , maxNodeLevel(root)) # This code is contributed by Pranchalk |
C#
using System; using System.Collections.Generic; // C# implementation to find the level // having maximum number of Nodes public class GfG { /* A binary tree Node has data, pointer to left child and a pointer to right child */ public class Node { public int data; public Node left; public Node right; } /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ public static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = null ; node.right = null ; return (node); } // function to find the level // having maximum number of Nodes public static int maxNodeLevel(Node root) { if (root == null ) { return -1; } LinkedList<Node> q = new LinkedList<Node> (); q.AddLast(root); // Current level int level = 0; // Maximum Nodes at same level int max = int .MinValue; // Level having maximum Nodes int level_no = 0; while ( true ) { // Count Nodes in a level int NodeCount = q.Count; if (NodeCount == 0) { break ; } // If it is maximum till now // Update level_no to current level if (NodeCount > max) { max = NodeCount; level_no = level; } // Pop complete current level while (NodeCount > 0) { Node Node = q.First.Value; q.RemoveFirst(); if (Node.left != null ) { q.AddLast(Node.left); } if (Node.right != null ) { q.AddLast(Node.right); } NodeCount--; } // Increment for next level level++; } return level_no; } // Driver program to test above public static void Main( string [] args) { // binary tree formation Node root = newNode(2); // 2 root.left = newNode(1); // / \ root.right = newNode(3); // 1 3 root.left.left = newNode(4); // / \ \ root.left.right = newNode(6); // 4 6 8 root.right.right = newNode(8); // / root.left.right.left = newNode(5); // 5 Console.WriteLine( "Level having maximum number of Nodes : " + maxNodeLevel(root)); } } // This code is contributed by Shrikant13 |
Javascript
<script> // Javascript implementation to find the level // having maximum number of Nodes /* A binary tree Node has data, pointer to left child and a pointer to right child */ class Node { constructor() { this .data = 0; this .left = null ; this .right = null ; } } /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ function newNode(data) { var node = new Node(); node.data = data; node.left = null ; node.right = null ; return (node); } // function to find the level // having maximum number of Nodes function maxNodeLevel(root) { if (root == null ) { return -1; } var q = []; q.push(root); // Current level var level = 0; // Maximum Nodes at same level var max = -1000000000; // Level having maximum Nodes var level_no = 0; while ( true ) { // length Nodes in a level var NodeCount = q.length; if (NodeCount == 0) { break ; } // If it is maximum till now // Update level_no to current level if (NodeCount > max) { max = NodeCount; level_no = level; } // Pop complete current level while (NodeCount > 0) { var Node = q[0]; q.shift(); if (Node.left != null ) { q.push(Node.left); } if (Node.right != null ) { q.push(Node.right); } NodeCount--; } // Increment for next level level++; } return level_no; } // Driver program to test above // binary tree formation var root = newNode(2); // 2 root.left = newNode(1); // / \ root.right = newNode(3); // 1 3 root.left.left = newNode(4); // / \ \ root.left.right = newNode(6); // 4 6 8 root.right.right = newNode(8); // / root.left.right.left = newNode(5); // 5 document.write( "Level having maximum number of Nodes : " + maxNodeLevel(root)); // This code is contributed by famously. </script> |
Level having maximum number of Nodes : 2
Time Complexity: O(n), In BFS traversal every node is visited only once, So Time Complexity is O(n).
Auxiliary Space: O(n), The space is required to store the nodes in a queue.
An approach using DFS:
Iterate over the tree and for every nodes in the tree, count the frequency of nodes at particular height or depth.
- Create a map for counting the frequency of nodes at a particular height or depth.
- Iterate over the tree
- Increment the count of the number of nodes at a particular depth for every node.
- Iterate over the map and find the level that has the maximum number of nodes.
Below is the implementation of the above approach:
C++
// C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // C++ implementation to find the level // having maximum number of Nodes #include <bits/stdc++.h> using namespace std; /* A binary tree Node has data, pointer to left child and a pointer to right child */ struct Node { int data; struct Node* left; struct Node* right; }; /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ struct Node* newNode( int data) { struct Node* node = new Node; node->data = data; node->left = NULL; node->right = NULL; return (node); } void dfs(Node* root,unordered_map< int , int > &unmap, int depth){ if (root == NULL) return ; // Increment the count of nodes at depth in map unmap[depth]++; dfs(root->left,unmap, depth + 1); dfs(root->right, unmap, depth + 1); } int maxNodeLevel(Node *root) { unordered_map< int , int > unmap; dfs(root, unmap, 0); int maxx = INT_MIN, result; for ( auto it : unmap){ if (it.second > maxx){ result = it.first; maxx = it.second; } else if (it.second == maxx){ result = min(result, it.first); } } return result; } // Driver program to test above int main() { // binary tree formation struct Node *root = newNode(2); /* 2 */ root->left = newNode(1); /* / \ */ root->right = newNode(3); /* 1 3 */ root->left->left = newNode(4); /* / \ \ */ root->left->right = newNode(6); /* 4 6 8 */ root->right->right = newNode(8); /* / */ root->left->right->left = newNode(5); /* 5 */ printf ( "Level having maximum number of Nodes : %d" , maxNodeLevel(root)); return 0; } // This code is contributed by hkdass001 |
Java
// Java implementation to find the level having // maximum number of nodes import java.util.*; class GFG{ /* A binary tree Node has data, pointer to left child and a pointer to right child */ static class Node{ int data; Node left; Node right; } /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ static Node newNode( int data){ Node node = new Node(); node.data = data; node.left = null ; node.right = null ; return node; } static void dfs(Node root, Map<Integer, Integer> unmap, int depth){ if (root == null ) return ; // Increment the count of nodes at depth in map if (unmap.containsKey(depth)){ unmap.put(depth, unmap.get(depth)+ 1 ); } else { unmap.put(depth, 1 ); } // unmap.put(depth, unmap.get(depth) + 1); dfs(root.left, unmap, depth+ 1 ); dfs(root.right, unmap, depth+ 1 ); } // function to find the level // having maximum number of Nodes static int maxNodeLevel(Node root){ Map<Integer, Integer> unmap = new HashMap<Integer, Integer>(); dfs(root, unmap, 0 ); int maxx = Integer.MIN_VALUE; int result = 0 ; for (Integer i : unmap.keySet()){ if (unmap.get(i) > maxx){ result = i; maxx = unmap.get(i); } else if (unmap.get(i) == maxx){ result = Math.min(result, i); } // System.out.println(i + " -> " + unmap.get(i)); } return result; } // Driver program to test above public static void main(String[] args) { // binary tree formation Node root = newNode( 2 ); /* 2 */ root.left = newNode( 1 ); /* / \ */ root.right = newNode( 3 ); /* 1 3 */ root.left.left = newNode( 4 ); /* / \ \ */ root.left.right = newNode( 6 ); /* 4 6 8 */ root.right.right = newNode( 8 ); /* / */ root.left.right.left = newNode( 5 ); /* 5 */ System.out.println( "Level having maximum number of Nodes : " + maxNodeLevel(root)); } } // This code is contributed by Kirti Agarwal |
Python3
# Python implementation to find the level # having maximum number of Nodes class Node: def __init__( self , data): self .data = data self .left = None self .right = None def dfs(root, unmap, depth): if root is None : return # Initialize the count of nodes at depth in map to 0 unmap[depth] = unmap.get(depth, 0 ) + 1 dfs(root.left, unmap, depth + 1 ) dfs(root.right, unmap, depth + 1 ) def maxNodeLevel(root): unmap = {} dfs(root, unmap, 0 ) maxx = float ( '-inf' ) result = None for k, v in unmap.items(): if v > maxx: result = k maxx = v elif v = = maxx: result = min (result, k) return result # Driver program to test above if __name__ = = "__main__" : # binary tree formation root = Node( 2 ) # 2 root.left = Node( 1 ) # / \ root.right = Node( 3 ) # 1 3 root.left.left = Node( 4 ) # / \ \ root.left.right = Node( 6 ) # 4 6 8 root.right.right = Node( 8 ) # / root.left.right.left = Node( 5 ) # 5 print ( "Level having maximum number of Nodes:" , maxNodeLevel(root)) |
Javascript
// JavaScript implementation to find the level // having maximum number of nodes // A binary tree node has data, pointer // to left child and a pointer to right child class Node{ constructor(data){ this .data = data; this .left = null ; this .right = null ; } } // Helper Function that allocated a new node with the // given data and null left and right pointers function newNode(data){ let node = new Node(data); return node; } function dfs(root, unmap, depth){ if (root == null ) return ; // Increment the count of nodes at depth in map if (unmap.has(depth)) unmap.set(depth, unmap.get(depth)+1); else unmap.set(depth, 1); dfs(root.left, unmap, depth+1); dfs(root.right, unmap, depth+1); } function maxNodeLevel(root){ let unmap = new Map(); dfs(root, unmap, 0); let maxx = Number.MIN_VALUE; let result; unmap.forEach( function (value, key){ if (value > maxx){ result = key; maxx = value; } else if (value == maxx){ result = Math.min(result, key); } }) return result; } // Driver program to test above // binary tree formation let root = newNode(2); /* 2 */ root.left = newNode(1); /* / \ */ root.right = newNode(3); /* 1 3 */ root.left.left = newNode(4); /* / \ \ */ root.left.right = newNode(6); /* 4 6 8 */ root.right.right = newNode(8); /* / */ root.left.right.left = newNode(5); /* 5 */ console.log( "Level having maximum number of Nodes : " + maxNodeLevel(root)); // This code is contributed by Yash Agarwal |
C#
using System; using System.Collections.Generic; public class GFG { // A binary tree Node has data, pointer to left child and a pointer to right child public class Node { public int data; public Node left; public Node right; } // Helper function that allocates a new node with the given data and NULL left and right pointers. public static Node NewNode( int data) { Node node = new Node(); node.data = data; node.left = null ; node.right = null ; return node; } public static void Dfs(Node root, Dictionary< int , int > unmap, int depth) { if (root == null ) { return ; } // Increment the count of nodes at depth in map if (unmap.ContainsKey(depth)) { unmap[depth]++; } else { unmap.Add(depth, 1); } Dfs(root.left, unmap, depth + 1); Dfs(root.right, unmap, depth + 1); } // Function to find the level having maximum number of nodes public static int MaxNodeLevel(Node root) { Dictionary< int , int > unmap = new Dictionary< int , int >(); Dfs(root, unmap, 0); int maxx = int .MinValue; int result = 0; foreach ( int i in unmap.Keys) { if (unmap[i] > maxx) { result = i; maxx = unmap[i]; } else if (unmap[i] == maxx) { result = Math.Min(result, i); } } return result; } // Driver program to test above public static void Main( string [] args) { // binary tree formation Node root = NewNode(2); /* 2 */ root.left = NewNode(1); /* / \ */ root.right = NewNode(3); /* 1 3 */ root.left.left = NewNode(4); /* / \ \ */ root.left.right = NewNode(6); /* 4 6 8 */ root.right.right = NewNode(8); /* / */ root.left.right.left = NewNode(5); /* 5 */ Console.WriteLine( "Level having maximum number of Nodes: " + MaxNodeLevel(root)); } } |
Level having maximum number of Nodes : 2
Time Complexity: O(n), where n is the number of nodes in the given tree.
Auxiliary Space: O(h), where h is the height of the tree, this space is due to the recursion call stack.
This article is contributed by Ayush Jauhari. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...