Length of Longest subarray such that difference between adjacent elements is K
Given an array arr[] of size N, and integer K. The task is to find the length of the longest subarray with the difference between adjacent elements as K.
Examples:
Input: arr[] = { 5, 5, 5, 10, 8, 6, 12, 13 }, K =1
Output: 2
Explanation: Only one subarray which have difference between adjacents as 1 is {12, 13}.Input: arr[] = {4, 6, 8, 9, 8, 12, 14, 17, 15}, K = 2
Output: 3
Explanation: There are three such subarrays {4, 6, 8}, {12, 14} and {17, 15}.
{4, 6, 8} has the highest length.Input: arr[] = {2, 2, 4, 6}, K = 1
Output: 1
Explanation: No subarray of length more than satisfies this criteria.
Approach: Starting from the first element of the array, find the first valid sub-array and store its length then starting from the next element (the first element that wasn’t included in the first sub-array), find another valid sub-array. Repeat the process until all the valid sub-arrays have been found then print the length of the longest sub-array.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the maximum length // of the sub-array such that the // absolute difference between every two // consecutive elements is K int getMaxLength( int arr[], int N, int K) { int l = N; int i = 0, maxlen = 0; while (i < l) { int j = i; while (i + 1 < l && ( abs (arr[i] - arr[i + 1]) == K)) { i++; } // Length of the valid sub-array // currently under consideration int currLen = i - j + 1; // Update the maximum length if (maxlen < currLen) maxlen = currLen; if (j == i) i++; } // Return the maximum possible length return maxlen; } // Driver code int main() { int arr[] = { 2, 2, 4, 6 }; int K = 1; int N = sizeof (arr) / sizeof (arr[0]); cout << getMaxLength(arr, N, K); return 0; } |
Java
// Java program for the above approach import java.util.*; public class GFG { // Function to return the maximum length // of the sub-array such that the // absolute difference between every two // consecutive elements is K static int getMaxLength( int arr[], int N, int K) { int l = N; int i = 0 , maxlen = 0 ; while (i < l) { int j = i; while (i + 1 < l && (Math.abs(arr[i] - arr[i + 1 ]) == K)) { i++; } // Length of the valid sub-array // currently under consideration int currLen = i - j + 1 ; // Update the maximum length if (maxlen < currLen) maxlen = currLen; if (j == i) i++; } // Return the maximum possible length return maxlen; } // Driver code public static void main(String args[]) { int arr[] = { 2 , 2 , 4 , 6 }; int K = 1 ; int N = arr.length; System.out.print(getMaxLength(arr, N, K)); } } // This code is contributed by Samim Hossain Mondal. |
Python3
# Python implementation of the approach # Function to return the maximum length # of the sub-array such that the # absolute difference between every two # consecutive elements is K def getMaxLength (arr, N, K): l = N; i = 0 maxlen = 0 ; while (i < l): j = i; while (i + 1 < l and ( abs (arr[i] - arr[i + 1 ]) = = K)): i + = 1 # Length of the valid sub-array # currently under consideration currLen = i - j + 1 ; # Update the maximum length if (maxlen < currLen): maxlen = currLen; if (j = = i): i + = 1 # Return the maximum possible length return maxlen; # Driver code arr = [ 2 , 2 , 4 , 6 ]; K = 1 ; N = len (arr) print (getMaxLength(arr, N, K)); # This code is contributed by gfgking |
C#
// C# program for the above approach using System; class GFG { // Function to return the maximum length // of the sub-array such that the // absolute difference between every two // consecutive elements is K static int getMaxLength( int []arr, int N, int K) { int l = N; int i = 0, maxlen = 0; while (i < l) { int j = i; while (i + 1 < l && (Math.Abs(arr[i] - arr[i + 1]) == K)) { i++; } // Length of the valid sub-array // currently under consideration int currLen = i - j + 1; // Update the maximum length if (maxlen < currLen) maxlen = currLen; if (j == i) i++; } // Return the maximum possible length return maxlen; } // Driver Code public static void Main() { int []arr = { 2, 2, 4, 6 }; int K = 1; int N = arr.Length; Console.Write(getMaxLength(arr, N, K)); } } // This code is contributed by Samim Hossain Mondal. |
Javascript
<script> // JavaScript implementation of the approach // Function to return the maximum length // of the sub-array such that the // absolute difference between every two // consecutive elements is K const getMaxLength = (arr, N, K) => { let l = N; let i = 0, maxlen = 0; while (i < l) { let j = i; while (i + 1 < l && (Math.abs(arr[i] - arr[i + 1]) == K)) { i++; } // Length of the valid sub-array // currently under consideration let currLen = i - j + 1; // Update the maximum length if (maxlen < currLen) maxlen = currLen; if (j == i) i++; } // Return the maximum possible length return maxlen; } // Driver code let arr = [2, 2, 4, 6]; let K = 1; let N = arr.length; document.write(getMaxLength(arr, N, K)); // This code is contributed by rakeshsahni </script> |
1
Time Complexity: O(N2)
Auxiliary Space: O(1)
Please Login to comment...