Largest Prime Number possible from a subsequence of a Binary String
Given a Binary string, the task is to find the largest Prime Number possible by the decimal representation of a subsequence of the given binary string. If no prime number can be obtained, print -1.
Examples:
Input: S = “1001”
Output: 5
Explanation: Out of all subsequences of the string “1001”, the largest prime number that can be obtained is “101” (= 5).Input: “1011”
Output: 11
Explanation: Out of all subsequences of the string “1011”, the largest prime number that can be obtained is “1011” (= 11).
Approach: To solve the problem, the idea is to generate all possible subsequences of the string, and convert each subsequence to its equivalent decimal form. Print the largest prime number obtained from this subsequences.
Follow the steps below to solve this problem:
- Initialize a vector of pairs, say vec, for storing pairs of strings and their equivalent decimal values, in Pair.first and Pair.second respectively.
- Initialize a variable, say ans, to store the required answer.
- Iterate a loop from i = 0 to length of the string s:
- Iterate a loop from j = 0 to the length of vec:
- Store the jth pair in temp.
- If the ith character of string s is ‘1‘:
- Add the character in temp.first.
- Update the value of temp.second by left shifting the current value and adding 1 to it.
- Otherwise:
- Add the character in temp.first.
- Update the value of temp.second by left shifting the current value and adding 0 to it.
- Store this temp pair into vec.
- If the temp.second is prime:
- Store max of ans and temp.second in ans.
- If ans is equal to 0:
- No prime number can be obtained from the string s.
- Otherwise:
- Print ans.
- Iterate a loop from j = 0 to the length of vec:
Below is the implementation of the above approach:
C++
// C++ Program to implement // the above approach #include <iostream> #include <vector> using namespace std; // Function to check if a // number is prime or not bool isPrime( int x) { if (x <= 1) return false ; for ( int i = 2; i * i <= x; i++) { if (x % i == 0) // Return not prime return false ; } // If prime return true return true ; } // Function to find the largest prime // number possible from a subsequence void largestPrime(string s) { // Stores pairs of subsequences and // their respective decimal value vector<pair<string, int > > vec{ { "" , 0 } }; // Stores the answer int ans = 0; // Traverse the string for ( int i = 0; i < s.length(); i++) { // Stores the size of the vector int n = vec.size(); // Traverse the vector for ( int j = 0; j < n; j++) { // Extract the current pair pair<string, int > temp = vec[j]; // Get the binary string from the pair string str = temp.first; // Stores equivalent decimal values int val = temp.second; // If the current character is '1' if (s[i] == '1' ) { // Add the character // to the subsequence temp.first = str + '1' ; // Update the value by left // shifting the current // value and adding 1 to it temp.second = ((val << 1) + 1); } // If s[i]=='0' else { // Add the character // to the subsequence temp.first = str + '0' ; // Update the value by left // shifting the current // value and adding 0 to it temp.second = ((val << 1) + 0); } // Store the subsequence in the vector vec.push_back(temp); // Check if the decimal // representation of current // subsequence is prime or not int check = temp.second; // If prime if (isPrime(check)) { // Update the answer // with the largest one ans = max(ans, check); } } } // If no prime number // could be obtained if (ans == 0) cout << -1 << endl; else cout << ans << endl; } // Driver Code int main() { // Input String string s = "110" ; largestPrime(s); return 0; } |
Java
// Java code to implement the approach import java.util.*; class GFG { // Function to check if a // number is prime or not static boolean isPrime( int x) { if (x <= 1 ) return false ; for ( int i = 2 ; i * i <= x; i++) { if (x % i == 0 ) // Return not prime return false ; } // If prime return true return true ; } // Function to find the largest prime // number possible from a subsequence static void largestPrime(String s) { // Stores pairs of subsequences and // their respective decimal value List<StringIntPair> vec = new ArrayList<>(); vec.add( new StringIntPair( "" , 0 )); // Stores the answer int ans = 0 ; // Traverse the string for ( int i = 0 ; i < s.length(); i++) { // Stores the size of the vector int n = vec.size(); // Traverse the vector for ( int j = 0 ; j < n; j++) { // Extract the current pair StringIntPair ele = vec.get(j); String str = ele.str; int val = ele.val; // If the current character is '1' if (s.charAt(i) == '1' ) { // Add the character // to the subsequence str = str + '1' ; // Update the value by left // shifting the current // value and adding 1 to it val = ((val << 1 ) + 1 ); } // If s[i]=='0' else { // Add the character // to the subsequence str = str + '0' ; // Update the value by left // shifting the current // value and adding 0 to it val = ((val << 1 ) + 0 ); } // Store the subsequence in the vector vec.add( new StringIntPair(str, val)); // Check if the decimal // representation of current // subsequence is prime or not int check = val; // If prime if (isPrime(check)) { // Update the answer // with the largest one ans = Math.max(ans, check); } } } // If no prime number // could be obtained if (ans == 0 ) System.out.println(- 1 ); else System.out.println(ans); } // Driver Code public static void main(String[] args) { // Input String String s = "110" ; largestPrime(s); } // Class to store pairs of strings and integers static class StringIntPair { String str; int val; StringIntPair(String str, int val) { this .str = str; this .val = val; } } } // This code is contributed by phasing17. |
Python3
# Python3 program to implement # the above approach # Function to check if a # number is prime or not def isPrime(x): if (x < = 1 ): return False for i in range ( 2 , x + 1 ): if i * i > x: break if (x % i = = 0 ): # Return not prime return False # If prime return true return True # Function to find the largest prime # number possible from a subsequence def largestPrime(s): # Stores pairs of subsequences and # their respective decimal value vec = [["", 0 ]] # Stores the answer ans = 0 # Traverse the string for i in range ( len (s)): # Stores the size of the vector n = len (vec) # Traverse the vector for j in range (n): # Extract the current pair temp = vec[j] # Get the binary string from the pair str = temp[ 0 ] # Stores equivalent decimal values val = temp[ 1 ] # If the current character is '1' if (s[i] = = '1' ): # Add the character # to the subsequence temp[ 0 ] = str + '1' # Update the value by left # shifting the current # value and adding 1 to it temp[ 1 ] = ((val << 1 ) + 1 ) # If s[i]=='0' else : # Add the character # to the subsequence temp[ 0 ] = str + '0' # Update the value by left # shifting the current # value and adding 0 to it temp[ 1 ] = ((val << 1 ) + 0 ) # Store the subsequence in the vector vec.append(temp) # Check if the decimal # representation of current # subsequence is prime or not check = temp[ 1 ] # If prime if (isPrime(check)): # Update the answer # with the largest one ans = max (ans, check) break # If no prime number # could be obtained if (ans = = 0 ): print ( - 1 ) else : print (ans) # Driver Code if __name__ = = '__main__' : # Input String s = "110" largestPrime(s) # This code is contributed by mohit kumar 29 |
C#
// C# code to implement the approach using System; using System.Collections.Generic; class GFG { // Function to check if a // number is prime or not static bool IsPrime( int x) { if (x <= 1) return false ; for ( int i = 2; i * i <= x; i++) { if (x % i == 0) // Return not prime return false ; } // If prime return true return true ; } // Function to find the largest prime // number possible from a subsequence static void LargestPrime( string s) { // Stores pairs of subsequences and // their respective decimal value List<Tuple< string , int > > vec = new List<Tuple< string , int > >(); vec.Add(Tuple.Create( "" , 0)); // Stores the answer int ans = 0; // Traverse the string for ( int i = 0; i < s.Length; i++) { // Stores the size of the vector int n = vec.Count; // Traverse the vector for ( int j = 0; j < n; j++) { // Extract the current pair var ele = vec[j]; string str = ele.Item1; int val = ele.Item2; // If the current character is '1' if (s[i] == '1' ) { // Add the character // to the subsequence str = str + '1' ; // Update the value by left // shifting the current // value and adding 1 to it val = ((val << 1) + 1); } // If s[i]=='0' else { // Add the character // to the subsequence str = str + '0' ; // Update the value by left // shifting the current // value and adding 0 to it val = ((val << 1) + 0); } // Store the subsequence in the vector vec.Add(Tuple.Create(str, val)); // Check if the decimal // representation of current // subsequence is prime or not int check = val; // If prime if (IsPrime(check)) { // Update the answer // with the largest one ans = Math.Max(ans, check); } } } // If no prime number // could be obtained if (ans == 0) Console.WriteLine(-1); else Console.WriteLine(ans); } // Driver Code public static void Main( string [] args) { // Input String string s = "110" ; LargestPrime(s); } } // This code is contributed by phasing17 |
Javascript
<script> // JavaScript Program to implement // the above approach // Function to check if a // number is prime or not function isPrime(x) { if (x <= 1) return false ; for (let i = 2; i * i <= x; i++) { if (i * i > x){ break } if (x % i == 0) // Return not prime return false ; } // If prime return true return true ; } // Function to find the largest prime // number possible from a subsequence function largestPrime(s) { // Stores pairs of subsequences and // their respective decimal value let vec = [[ "" , 0]]; // Stores the answer let ans = 0; // Traverse the string for (let i = 0; i < s.length; i++) { // Stores the size of the vector let n = vec.length; // Traverse the vector for (let j = 0; j < n; j++) { // Extract the current pair let temp = vec[j]; // Get the binary string from the pair let str = temp[0]; // Stores equivalent decimal values let val = temp[1]; // If the current character is '1' if (s[i] == '1' ) { // Add the character // to the subsequence temp[0] = str + '1' ; // Update the value by left // shifting the current // value and adding 1 to it temp[1] = ((val << 1) + 1); } // If s[i]=='0' else { // Add the character // to the subsequence temp[0] = str + '0' ; // Update the value by left // shifting the current // value and adding 0 to it temp[1] = ((val << 1) + 0); } // Store the subsequence in the vector vec.push(temp); // Check if the decimal // representation of current // subsequence is prime or not let check = temp[1]; // If prime if (isPrime(check)) { // Update the answer // with the largest one ans = Math.max(ans, check); break } } } // If no prime number // could be obtained if (ans == 0) document.write(-1 + "<br>" ); else document.write(ans + "<br>" ); } // Driver Code // Input String let s = "110" ; largestPrime(s); </script> |
3
Time Complexity: O(2N * √N), where N is the length of the string.
Auxiliary Space: O(2N * N)
Please Login to comment...