Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

K’th Least Element in a Min-Heap

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a min-heap of size n, find the kth least element in the min-heap. 

Examples:

Input : {10, 50, 40, 75, 60, 65, 45} k = 4 
Output : 50 

Input : {10, 50, 40, 75, 60, 65, 45} k = 2 
Output : 40

Naive approach: We can extract the minimum element from the min-heap k times and the last element extracted will be the kth least element. Each deletion operation takes O(log n) time, so the total time complexity of this approach comes out to be O(k * log n). 

Implementation:

C++




// C++ program to find k-th smallest
// element in Min Heap.
#include <bits/stdc++.h>
using namespace std;
 
// Structure for the heap
struct Heap {
    vector<int> v;
    int n; // Size of the heap
 
    Heap(int i = 0)
        : n(i)
    {
        v = vector<int>(n);
    }
};
 
// Generic function to
// swap two integers
void swap(int& a, int& b)
{
    int temp = a;
    a = b;
    b = temp;
}
 
// Returns the index of
// the parent node
inline int parent(int i)
{
    return (i - 1) / 2;
}
 
// Returns the index of
// the left child node
inline int left(int i)
{
    return 2 * i + 1;
}
 
// Returns the index of
// the right child node
inline int right(int i)
{
    return 2 * i + 2;
}
 
// Maintains the heap property
void heapify(Heap& h, int i)
{
    int l = left(i), r = right(i), m = i;
    if (l < h.n && h.v[i] > h.v[l])
        m = l;
    if (r < h.n && h.v[m] > h.v[r])
        m = r;
    if (m != i) {
        swap(h.v[m], h.v[i]);
        heapify(h, m);
    }
}
 
// Extracts the minimum element
int extractMin(Heap& h)
{
    if (!h.n)
        return -1;
    int m = h.v[0];
    h.v[0] = h.v[h.n-- - 1];
    heapify(h, 0);
    return m;
}
 
int findKthSmalles(Heap &h, int k)
{
    for (int i = 1; i < k; ++i)
        extractMin(h);
    return extractMin(h);
}
 
int main()
{
    Heap h(7);
    h.v = vector<int>{ 10, 50, 40, 75, 60, 65, 45 };
    int k = 2;
    cout << findKthSmalles(h, k);
    return 0;
}


Java




import java.util.*;
 
// Class for the heap
class Heap {
    List<Integer> v;
    int n; // Size of the heap
 
    Heap(int i) {
        n = i;
        v = new ArrayList<Integer>(Collections.nCopies(n, 0));
    }
}
 
// Main class
public class Main {
    // Generic function to swap two integers
    public static void swap(int[] a, int i, int j) {
        int temp = a[i];
        a[i] = a[j];
        a[j] = temp;
    }
 
    // Returns the index of the parent node
    public static int parent(int i) {
        return (i - 1) / 2;
    }
 
    // Returns the index of the left child node
    public static int left(int i) {
        return 2 * i + 1;
    }
 
    // Returns the index of the right child node
    public static int right(int i) {
        return 2 * i + 2;
    }
 
    // Maintains the heap property
    public static void heapify(Heap h, int i) {
        int l = left(i), r = right(i), m = i;
        if (l < h.n && h.v.get(i) > h.v.get(l))
            m = l;
        if (r < h.n && h.v.get(m) > h.v.get(r))
            m = r;
        if (m != i) {
            Collections.swap(h.v, m, i);
            heapify(h, m);
        }
    }
 
    // Extracts the minimum element
    public static int extractMin(Heap h) {
        if (h.n == 0)
            return -1;
        int m = h.v.get(0);
        h.v.set(0, h.v.get(h.n - 1));
        h.n--;
        heapify(h, 0);
        return m;
    }
 
    public static int findKthSmallest(Heap h, int k) {
        for (int i = 1; i < k; ++i)
            extractMin(h);
        return extractMin(h);
    }
 
    public static void main(String[] args) {
        Heap h = new Heap(7);
        h.v = Arrays.asList(10, 50, 40, 75, 60, 65, 45);
        int k = 2;
        System.out.println(findKthSmallest(h, k));
    }
}


Python3




import heapq
 
# Structure for the heap
class Heap:
    def __init__(self, i=0):
        self.v = [0] * i
        self.n = i
 
# Returns the index of the parent node
def parent(i):
    return (i - 1) // 2
 
# Returns the index of the left child node
def left(i):
    return 2 * i + 1
 
# Returns the index of the right child node
def right(i):
    return 2 * i + 2
 
# Maintains the heap property
def heapify(h, i):
    l, r, m = left(i), right(i), i
    if l < h.n and h.v[i] > h.v[l]:
        m = l
    if r < h.n and h.v[m] > h.v[r]:
        m = r
    if m != i:
        h.v[i], h.v[m] = h.v[m], h.v[i]
        heapify(h, m)
 
# Extracts the minimum element
def extractMin(h):
    if not h.n:
        return -1
    m = h.v[0]
    h.v[0] = h.v[h.n - 1]
    h.n -= 1
    heapify(h, 0)
    return m
 
def findKthSmallest(h, k):
    for i in range(1, k):
        extractMin(h)
    return extractMin(h)
 
h = Heap(7)
h.v = [10, 50, 40, 75, 60, 65, 45]
k = 2
print(findKthSmallest(h, k))


Javascript




// Structure for the heap
class Heap {
  constructor(i = 0) {
    this.v = new Array(i);
    this.n = i; // Size of the heap
  }
}
 
// Returns the index of
// the parent node
function parent(i) {
  return Math.floor((i - 1) / 2);
}
 
// Returns the index of
// the left child node
function left(i) {
  return 2 * i + 1;
}
 
// Returns the index of
// the right child node
function right(i) {
  return 2 * i + 2;
}
 
// Maintains the heap property
function heapify(h, i) {
  let l = left(i),
    r = right(i),
    m = i;
  if (l < h.n && h.v[i] > h.v[l]) m = l;
  if (r < h.n && h.v[m] > h.v[r]) m = r;
  if (m != i) {
    let temp = h.v[m];
    h.v[m] = h.v[i];
    h.v[i] = temp;
    heapify(h, m);
  }
}
 
// Extracts the minimum element
function extractMin(h) {
  if (!h.n) return -1;
  let m = h.v[0];
  h.v[0] = h.v[h.n-- - 1];
  heapify(h, 0);
  return m;
}
 
function findKthSmallest(h, k) {
  for (let i = 1; i < k; ++i) extractMin(h);
  return extractMin(h);
}
 
const h = new Heap(7);
h.v = [10, 50, 40, 75, 60, 65, 45];
const k = 2;
console.log(findKthSmallest(h, k));


C#




using System;
using System.Collections.Generic;
using System.Linq;
 
public class Heap {
    public List<int> v;
    public int n { get; private set; } // Size of the heap
    public Heap(int i) {
        n = i;
        v = Enumerable.Repeat(0, n).ToList();
    }
 
    // Maintains the heap property
    private void heapify(int i) {
        int l = left(i), r = right(i), m = i;
        if (l < n && v[i] > v[l])
            m = l;
        if (r < n && v[m] > v[r])
            m = r;
        if (m != i) {
            swap(v, m, i);
            heapify(m);
        }
    }
 
    // Extracts the minimum element
    public int extractMin() {
        if (n == 0)
            return -1;
        int m = v[0];
        v[0] = v[n - 1];
        n--;
        heapify(0);
        return m;
    }
 
    public int findKthSmallest(int k) {
        for (int i = 1; i < k; ++i)
            extractMin();
        return extractMin();
    }
 
    // Returns the index of the parent node
    private static int parent(int i) {
        return (i - 1) / 2;
    }
 
    // Returns the index of the left child node
    private static int left(int i) {
        return 2 * i + 1;
    }
 
    // Returns the index of the right child node
    private static int right(int i) {
        return 2 * i + 2;
    }
 
    // Generic function to swap two integers
    private static void swap(List<int> a, int i, int j) {
        int temp = a[i];
        a[i] = a[j];
        a[j] = temp;
    }
}
 
public class MainClass {
    public static void Main(string[] args) {
        Heap h = new Heap(7);
        h.v = new List<int> { 10, 50, 40, 75, 60, 65, 45 };
        int k = 2;
        Console.WriteLine(h.findKthSmallest(k));
    }
}


Output

40

Time Complexity: O(k * log n) 

Efficient approach

We can note an interesting observation about min-heap. An element x at ith level has i – 1 ancestor. By the property of min-heaps, these i – 1 ancestors are guaranteed to be less than x. This implies that x cannot be among the least i – 1 element of the heap. Using this property, we can conclude that the kth least element can have a level of at most k. We can reduce the size of the min-heap such that it has only k levels. We can then obtain the kth least element by our previous strategy of extracting the minimum element k times. 

Note that the size of the heap is reduced to a maximum of 2k – 1, therefore each heapify operation will take O(log 2k) = O(k) time. The total time complexity will be O(k2). If n >> k, then this approach performs better than the previous one. 

Implementation:

C++




// C++ program to find k-th smallest
// element in Min Heap using k levels
#include <bits/stdc++.h>
using namespace std;
 
// Structure for the heap
struct Heap {
    vector<int> v;
    int n; // Size of the heap
 
    Heap(int i = 0)
        : n(i)
    {
        v = vector<int>(n);
    }
};
 
// Generic function to
// swap two integers
void swap(int& a, int& b)
{
    int temp = a;
    a = b;
    b = temp;
}
 
// Returns the index of
// the parent node
inline int parent(int i) { return (i - 1) / 2; }
 
// Returns the index of
// the left child node
inline int left(int i) { return 2 * i + 1; }
 
// Returns the index of
// the right child node
inline int right(int i) { return 2 * i + 2; }
 
// Maintains the heap property
void heapify(Heap& h, int i)
{
    int l = left(i), r = right(i), m = i;
    if (l < h.n && h.v[i] > h.v[l])
        m = l;
    if (r < h.n && h.v[m] > h.v[r])
        m = r;
    if (m != i) {
        swap(h.v[m], h.v[i]);
        heapify(h, m);
    }
}
 
// Extracts the minimum element
int extractMin(Heap& h)
{
    if (!h.n)
        return -1;
    int m = h.v[0];
    h.v[0] = h.v[h.n-- - 1];
    heapify(h, 0);
    return m;
}
 
int findKthSmalles(Heap& h, int k)
{
    h.n = min(h.n, int(pow(2, k) - 1));
    for (int i = 1; i < k; ++i)
        extractMin(h);
    return extractMin(h);
}
 
int main()
{
    Heap h(7);
    h.v = vector<int>{ 10, 50, 40, 75, 60, 65, 45 };
    int k = 2;
    cout << findKthSmalles(h, k);
    return 0;
}


Java




// Java program to find k-th smallest
// element in Min Heap using k levels
import java.util.*;
 
// Structure for the heap
class Heap {
    Vector<Integer> v;
    int n; // Size of the heap
 
    Heap(int i)
    {
        n = i;
        v = new Vector<Integer>(n);
    }
}
 
public class Main {
 
    // Generic function to
    // swap two integers
    static void swap(Vector<Integer> v, int a, int b)
    {
        int temp = v.get(a);
        v.set(a, v.get(b));
        v.set(b, temp);
    }
 
    // Returns the index of
    // the parent node
    static int parent(int i) { return (i - 1) / 2; }
 
    // Returns the index of
    // the left child node
    static int left(int i) { return 2 * i + 1; }
 
    // Returns the index of
    // the right child node
    static int right(int i) { return 2 * i + 2; }
 
    // Maintains the heap property
    static void heapify(Heap h, int i)
    {
        int l = left(i), r = right(i), m = i;
        if (l < h.n && h.v.get(i) > h.v.get(l))
            m = l;
        if (r < h.n && h.v.get(m) > h.v.get(r))
            m = r;
        if (m != i) {
            swap(h.v, m, i);
            heapify(h, m);
        }
    }
 
    // Extracts the minimum element
    static int extractMin(Heap h)
    {
        if (h.n == 0)
            return -1;
        int m = h.v.get(0);
        h.v.set(0, h.v.get(h.n-- - 1));
        heapify(h, 0);
        return m;
    }
 
    static int findKthSmalles(Heap h, int k)
    {
        h.n = Math.min(h.n, (int)Math.pow(2, k) - 1);
        for (int i = 1; i < k; ++i)
            extractMin(h);
        return extractMin(h);
    }
 
    public static void main(String[] args)
    {
        Heap h = new Heap(7);
        h.v = new Vector<Integer>(
            Arrays.asList(10, 50, 40, 75, 60, 65, 45));
        int k = 2;
        System.out.println(findKthSmalles(h, k));
    }
}


Python3




# Python program to find k-th smallest
# element in Min Heap using k levels
import math
 
# Structure for the heap
class Heap:
    def __init__(self, i=0):
        self.v = [0] * i
        self.n = # Size of the heap
 
# Generic function to
# swap two integers
def swap(a, b):
    temp = a
    a = b
    b = temp
    return a, b
 
# Returns the index of
# the parent node
def parent(i):
    return (i - 1) // 2
 
# Returns the index of
# the left child node
def left(i):
    return 2 * i + 1
 
# Returns the index of
# the right child node
def right(i):
    return 2 * i + 2
 
# Maintains the heap property
def heapify(h, i):
    l, r, m = left(i), right(i), i
    if l < h.n and h.v[i] > h.v[l]:
        m = l
    if r < h.n and h.v[m] > h.v[r]:
        m = r
    if m != i:
        h.v[m], h.v[i] = swap(h.v[m], h.v[i])
        heapify(h, m)
 
# Extracts the minimum element
def extractMin(h):
    if not h.n:
        return -1
    m = h.v[0]
    h.v[0] = h.v[h.n - 1]
    h.n -= 1
    heapify(h, 0)
    return m
 
def findKthSmallest(h, k):
    h.n = min(h.n, int(math.pow(2, k) - 1))
    for i in range(1, k):
        extractMin(h)
    return extractMin(h)
 
 
if __name__ == '__main__':
    h = Heap(7)
    h.v = [10, 50, 40, 75, 60, 65, 45]
    k = 2
    print(findKthSmallest(h, k))


C#




using System;
using System.Collections.Generic;
using System.Linq;
 
public class Heap {
    public List<int> v;
    public int n; // Size of the heap
 
    public Heap(int i)
    {
        n = i;
        v = new List<int>(n);
    }
}
 
public class MainClass {
    // Generic function to
    // swap two integers
    static void swap(List<int> v, int a, int b)
    {
        int temp = v[a];
        v[a] = v[b];
        v[b] = temp;
    }
 
    // Returns the index of
    // the parent node
    static int parent(int i) { return (i - 1) / 2; }
 
    // Returns the index of
    // the left child node
    static int left(int i) { return 2 * i + 1; }
 
    // Returns the index of
    // the right child node
    static int right(int i) { return 2 * i + 2; }
 
    // Maintains the heap property
    static void heapify(Heap h, int i)
    {
        int l = left(i), r = right(i), m = i;
        if (l < h.n && h.v[i] > h.v[l])
            m = l;
        if (r < h.n && h.v[m] > h.v[r])
            m = r;
        if (m != i) {
            swap(h.v, m, i);
            heapify(h, m);
        }
    }
 
    // Extracts the minimum element
    static int extractMin(Heap h)
    {
        if (h.n == 0)
            return -1;
        int m = h.v[0];
        h.v[0] = h.v[h.n-- - 1];
        heapify(h, 0);
        return m;
    }
 
    static int findKthSmalles(Heap h, int k)
    {
        h.n = Math.Min(h.n, (int)Math.Pow(2, k) - 1);
        for (int i = 1; i < k; ++i)
            extractMin(h);
        return extractMin(h);
    }
 
    public static void Main(string[] args)
    {
        Heap h = new Heap(7);
        h.v = new List<int>(
            new int[] { 10, 50, 40, 75, 60, 65, 45 });
        int k = 2;
        Console.WriteLine(findKthSmalles(h, k));
    }
}


Javascript




// JavaScript program to find k-th smallest
// element in Min Heap using k levels
 
 
// Structure for the heap
class Heap {
constructor(i = 0) {
this.v = new Array(i).fill(0);
this.n = i; // Size of the heap
}
}
 
// Generic function to
// swap two integers
function swap(a, b) {
const temp = a;
a = b;
b = temp;
return [a, b];
}
 
// Returns the index of
// the parent node
function parent(i) {
return Math.floor((i - 1) / 2);
}
 
// Returns the index of
// the left child node
function left(i) {
return 2 * i + 1;
}
 
// Returns the index of
// the right child node
function right(i) {
return 2 * i + 2;
}
 
// Maintains the heap property
function heapify(h, i) {
let l = left(i);
let r = right(i);
let m = i;
if (l < h.n && h.v[i] > h.v[l]) {
m = l;
}
if (r < h.n && h.v[m] > h.v[r]) {
m = r;
}
if (m != i) {
[h.v[m], h.v[i]] = swap(h.v[m], h.v[i]);
heapify(h, m);
}
}
 
// Extracts the minimum element
function extractMin(h) {
if (!h.n) {
return -1;
}
let m = h.v[0];
h.v[0] = h.v[h.n - 1];
h.n--;
heapify(h, 0);
return m;
}
 
function findKthSmallest(h, k) {
h.n = Math.min(h.n, Math.pow(2, k) - 1);
for (let i = 1; i < k; i++) {
extractMin(h);
}
return extractMin(h);
}
 
const h = new Heap(7);
h.v = [10, 50, 40, 75, 60, 65, 45];
const k = 2;
console.log(findKthSmallest(h, k));


Output

40

Time Complexity: O(k2) More efficient approach

We can further improve the time complexity of this problem by the following algorithm:

  1. Create a priority queue P (or Min Heap) and insert the root node of the min-heap into P. The comparator function of the priority queue should be such that the least element is popped.
  2. Repeat these steps k – 1 times:
    1. Pop the least element from P.
    2. Insert left and right child elements of the popped element. (if they exist).
  3. The least element in P is the kth least element of the min-heap.

The initial size of the priority queue is one, and it increases by at most one at each of the k – 1 steps. Therefore, there are maximum k elements in the priority queue and the time complexity of the pop and insert operations is O(log k). Thus the total time complexity is O(k * log k). 

Implementation:

C++




// C++ program to find k-th smallest
// element in Min Heap using another
// Min Heap (Or Priority Queue)
#include <bits/stdc++.h>
using namespace std;
 
// Structure for the heap
struct Heap {
    vector<int> v;
    int n; // Size of the heap
 
    Heap(int i = 0)
        : n(i)
    {
        v = vector<int>(n);
    }
};
 
// Returns the index of
// the left child node
inline int left(int i)
{
    return 2 * i + 1;
}
 
// Returns the index of
// the right child node
inline int right(int i)
{
    return 2 * i + 2;
}
 
int findKthSmalles(Heap &h, int k)
{
    // Create a Priority Queue
    priority_queue<pair<int, int>,
                vector<pair<int, int> >,
                greater<pair<int, int> > >
        p;
 
    // Insert root into the priority queue
    p.push(make_pair(h.v[0], 0));
 
    for (int i = 0; i < k - 1; ++i) {
        int j = p.top().second;
        p.pop();
        int l = left(j), r = right(j);
        if (l < h.n)
            p.push(make_pair(h.v[l], l));
        if (r < h.n)
            p.push(make_pair(h.v[r], r));
    }
 
    return p.top().first;
}
 
int main()
{
    Heap h(7);
    h.v = vector<int>{ 10, 50, 40, 75, 60, 65, 45 };
    int k = 4;
    cout << findKthSmalles(h, k);
    return 0;
}


Python3




# Python program to find k-th smallest
# element in Min Heap using another
# Min Heap (Or Priority Queue)
 
import heapq
 
# Structure for the heap
 
 
class Heap:
    def __init__(self, n):
        self.v = [0] * n
        self.n = n
 
# Returns the index of
# the left child node
 
 
def left(i):
    return 2 * i + 1
 
# Returns the index of
# the right child node
 
 
def right(i):
    return 2 * i + 2
 
 
def findKthSmalles(h, k):
    # Create a Priority Queue
    p = []
 
    # Insert root into the priority queue
    heapq.heappush(p, (h.v[0], 0))
 
    for i in range(k - 1):
        j = heapq.heappop(p)[1]
        l, r = left(j), right(j)
        if l < h.n:
            heapq.heappush(p, (h.v[l], l))
        if r < h.n:
            heapq.heappush(p, (h.v[r], r))
 
    return p[0][0]
 
# Main function
 
 
def main():
    h = Heap(7)
    h.v = [10, 50, 40, 75, 60, 65, 45]
    k = 4
    print(findKthSmalles(h, k))
 
 
if __name__ == '__main__':
    main()


Output

50

Time Complexity: O(k * log k)


My Personal Notes arrow_drop_up
Last Updated : 19 Apr, 2023
Like Article
Save Article
Similar Reads
Related Tutorials