K’th largest element in a stream
Given an infinite stream of integers, find the Kth largest element at any point of time.
Note: Here we have a stream instead of a whole array and we are allowed to store only K elements.
Examples:
Input: stream[] = {10, 20, 11, 70, 50, 40, 100, 5, . . .}, K = 3
Output: {_, _, 10, 11, 20, 40, 50, 50, . . .}Input: stream[] = {2, 5, 1, 7, 9, . . .}, K = 2
Output: {_, 2, 2, 5, 7, . . .}
Naive Approach: To solve the problem follow the below idea:
Keep an array of size K. The idea is to keep the array sorted so that the Kth largest element can be found in O(1) time (we just need to return the first element of the array, if the array is sorted in increasing order
How to process a new element of the stream?
For every new element in the stream, check if the new element is smaller than the current Kth largest element. If yes, then ignore it. If no, then remove the smallest element from the array and insert the new element in sorted order.
The time complexity of processing a new element is O(K)
Kth largest element in a stream using a self-balancing binary search tree:
To solve the problem follow the below idea:
Create a self-balancing binary search tree and for every new element in the stream, check if the new element is smaller than the current k’th largest element. If yes, then ignore it. If no, then remove the smallest element from the tree and insert a new element.
The Kth largest element can be found in O(log K) time.
Kth largest element in a stream using a Min-Heap:
To solve the problem follow the below idea:
An Efficient Solution is to use a Min Heap of size K to store K largest elements of the stream. The Kth largest element is always at the root and can be found in O(1) time
How to process a new element of the stream?
Compare the new element with the root of the heap. If a new element is smaller, then ignore it. Otherwise, replace the root with a new element and call heapify for the root of the modified heap
Below is the implementation of the above approach:
CPP
// A C++ program to find k'th // smallest element in a stream #include <bits/stdc++.h> using namespace std; // Prototype of a utility function // to swap two integers void swap( int * x, int * y); // A class for Min Heap class MinHeap { int * harr; // pointer to array of elements in heap int capacity; // maximum possible size of min heap int heap_size; // Current number of elements in min heap public : MinHeap( int a[], int size); // Constructor void buildHeap(); void MinHeapify( int i); // To minheapify subtree rooted with index i int parent( int i) { return (i - 1) / 2; } int left( int i) { return (2 * i + 1); } int right( int i) { return (2 * i + 2); } int extractMin(); // extracts root (minimum) element int getMin() { return harr[0]; } // to replace root with new node x and heapify() new // root void replaceMin( int x) { harr[0] = x; MinHeapify(0); } }; MinHeap::MinHeap( int a[], int size) { heap_size = size; harr = a; // store address of array } void MinHeap::buildHeap() { int i = (heap_size - 1) / 2; while (i >= 0) { MinHeapify(i); i--; } } // Method to remove minimum element // (or root) from min heap int MinHeap::extractMin() { if (heap_size == 0) return INT_MAX; // Store the minimum value. int root = harr[0]; // If there are more than 1 items, // move the last item to // root and call heapify. if (heap_size > 1) { harr[0] = harr[heap_size - 1]; MinHeapify(0); } heap_size--; return root; } // A recursive method to heapify a subtree with root at // given index This method assumes that the subtrees are // already heapified void MinHeap::MinHeapify( int i) { int l = left(i); int r = right(i); int smallest = i; if (l < heap_size && harr[l] < harr[i]) smallest = l; if (r < heap_size && harr[r] < harr[smallest]) smallest = r; if (smallest != i) { swap(&harr[i], &harr[smallest]); MinHeapify(smallest); } } // A utility function to swap two elements void swap( int * x, int * y) { int temp = *x; *x = *y; *y = temp; } // Function to return k'th largest element from input stream void kthLargest( int k, vector< int >& A) { // count is total no. of elements in stream seen so far int count = 0, x; // x is for new element // Create a min heap of size k int * arr = new int [k]; MinHeap mh(arr, k); for ( auto & x : A) { // Nothing much to do for first k-1 elements if (count < k - 1) { arr[count] = x; count++; cout << "Kth largest element is -1 " << endl; } else { // If this is k'th element, then store it // and build the heap created above if (count == k - 1) { arr[count] = x; mh.buildHeap(); } else { // If next element is greater than // k'th largest, then replace the root if (x > mh.getMin()) mh.replaceMin(x); // replaceMin calls // heapify() } // Root of heap is k'th largest element cout << "Kth largest element is " << mh.getMin() << endl; count++; } } } // Driver code int main() { vector< int > arr = { 1, 2, 3, 4, 5, 6 }; int K = 3; // Function call kthLargest(K, arr); return 0; } |
Java
// Java program for the above approach import java.io.*; import java.util.*; class GFG { /* using min heap DS how data are stored in min Heap DS 1 2 3 if k==3 , then top element of heap itself the kth largest largest element */ static PriorityQueue<Integer> min; static int k; static List<Integer> getAllKthNumber( int arr[]) { // list to store kth largest number List<Integer> list = new ArrayList<>(); // one by one adding values to the min heap for ( int val : arr) { // if the heap size is less than k , we add to // the heap if (min.size() < k) min.add(val); /* otherwise , first we compare the current value with the min heap TOP value if TOP val > current element , no need to remove TOP , bocause it will be the largest kth element anyhow else we need to update the kth largest element by removing the top lowest element */ else { if (val > min.peek()) { min.poll(); min.add(val); } } // if heap size >=k we add // kth largest element // otherwise -1 if (min.size() >= k) list.add(min.peek()); else list.add(- 1 ); } return list; } // Driver Code public static void main(String[] args) { min = new PriorityQueue<>(); k = 3 ; int arr[] = { 1 , 2 , 3 , 4 , 5 , 6 }; // Function call List<Integer> res = getAllKthNumber(arr); for ( int x : res) System.out.println( "Kth largest element is " + x); } // This code is Contributed by Pradeep Mondal P } |
Python
# Python program for the above approach import heapq # min heap DS min = [] k = 3 # function to get all kth number def getAllKthNumber(arr): # list to store kth largest number list = [] # one by one adding values to the min heap for val in arr: # if the heap size is less than k , we add to # the heap if len ( min ) < k: heapq.heappush( min , val) # otherwise , # first we compare the current value with the # min heap TOP value # if TOP val > current element , no need to # remove TOP , bocause it will be the largest kth # element anyhow # else we need to update the kth largest element # by removing the top lowest element else : if val > min [ 0 ]: heapq.heappop( min ) heapq.heappush( min , val) # if heap size >=k we add # kth largest element # otherwise -1 if len ( min ) > = k: list .append( min [ 0 ]) else : list .append( - 1 ) return list # Driver Code arr = [ 1 , 2 , 3 , 4 , 5 , 6 ] # Function call res = getAllKthNumber(arr) for x in res: print ( "Kth largest element is" , x) # This code is contributed by adityamaharshi21 |
C#
// C# program for the above approach using System; using System.Collections.Generic; public class GFG { /* using min heap DS how data are stored in min Heap DS 1 2 3 if k==3 , then top element of heap itself the kth largest largest element */ static Queue< int > min; static int k; static List< int > getAllKthNumber( int [] arr) { // list to store kth largest number List< int > list = new List< int >(); // one by one adding values to the min heap foreach ( int val in arr) { // if the heap size is less than k , we add to // the heap if (min.Count < k) min.Enqueue(val); /* otherwise , first we compare the current value with the min heap TOP value if TOP val > current element , no need to remove TOP , bocause it will be the largest kth element anyhow else we need to update the kth largest element by removing the top lowest element */ else { if (val > min.Peek()) { min.Dequeue(); min.Enqueue(val); } } // if heap size >=k we add // kth largest element // otherwise -1 if (min.Count >= k) list.Add(min.Peek()); else list.Add(-1); } return list; } // Driver Code public static void Main(String[] args) { min = new Queue< int >(); k = 3; int [] arr = { 1, 2, 3, 4, 5, 6 }; // Function call List< int > res = getAllKthNumber(arr); foreach ( int x in res) Console.Write( "Kth largest element is " + x + "\n" ); } } // This code is contributed by shikhasingrajput |
Javascript
function getAllKthNumber(arr) { // min heap DS const min = []; const k = 3; // list to store kth largest number const list = []; // one by one adding values to the min heap for (const val of arr) { // if the heap size is less than k , we add to // the heap if (min.length < k) { min.push(val); min.sort((a, b) => a - b); } // otherwise , // first we compare the current value with the // min heap TOP value // if TOP val > current element , no need to // remove TOP , bocause it will be the largest kth // element anyhow // else we need to update the kth largest element // by removing the top lowest element else { if (val > min[0]) { min.shift(); min.push(val); min.sort((a, b) => a - b); } } // if heap size >=k we add // kth largest element // otherwise -1 if (min.length >= k) { list.push(min[0]); } else { list.push(-1); } } return list; } // Driver Code const arr = [1, 2, 3, 4, 5, 6]; // Function call const res = getAllKthNumber(arr); for (const x of res) { console.log( 'Kth largest element is' , x); } |
Kth largest element is -1 Kth largest element is -1 Kth largest element is 1 Kth largest element is 2 Kth largest element is 3 Kth largest element is 4
Time Complexity: O(N * log K)
Auxiliary Space: O(K)
Below is the implementation of the above approach using priority-queue:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; vector< int > kthLargest( int k, int arr[], int n) { vector< int > ans(n); // Creating a min-heap using priority queue priority_queue< int , vector< int >, greater< int > > pq; // Iterating through each element for ( int i = 0; i < n; i++) { // If size of priority // queue is less than k if (pq.size() < k) pq.push(arr[i]); else { if (arr[i] > pq.top()) { pq.pop(); pq.push(arr[i]); } } // If size is less than k if (pq.size() < k) ans[i] = -1; else ans[i] = pq.top(); } return ans; } // Driver Code int main() { int n = 6; int arr[n] = { 1, 2, 3, 4, 5, 6 }; int k = 4; // Function call vector< int > v = kthLargest(k, arr, n); for ( auto it : v) cout << it << " " ; return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG { static int [] kthLargest( int k, int arr[], int n) { int [] ans = new int [n]; // Creating a min-heap using priority queue PriorityQueue<Integer> pq = new PriorityQueue<>((a, b) -> a - b); // Iterating through each element for ( int i = 0 ; i < n; i++) { // If size of priority // queue is less than k if (pq.size() < k) pq.add(arr[i]); else { if (arr[i] > pq.peek()) { pq.remove(); pq.add(arr[i]); } } // If size is less than k if (pq.size() < k) ans[i] = - 1 ; else ans[i] = pq.peek(); } return ans; } // Driver Code public static void main(String[] args) { int n = 6 ; int arr[] = { 1 , 2 , 3 , 4 , 5 , 6 }; int k = 4 ; // Function call int [] v = kthLargest(k, arr, n); for ( int it : v) System.out.print(it + " " ); } } // This code is contributed by shikhasingrajput |
Python3
# Python3 program for the above approach from queue import PriorityQueue def kthLargest(k, arr, n): ans = [ 0 ] * n # Creating a min-heap using priority queue pq = PriorityQueue() # Iterating through each element for i in range (n): # If size of priority # queue is less than k if (pq.qsize() < k): pq.put(arr[i]) else : if (arr[i] > pq.queue[ 0 ]): pq.get() pq.put(arr[i]) # If size is less than k if (pq.qsize() < k): ans[i] = - 1 else : ans[i] = pq.queue[ 0 ] return ans # Driver Code if __name__ = = "__main__" : n = 6 arr = [ 1 , 2 , 3 , 4 , 5 , 6 ] k = 4 # Function call v = kthLargest(k, arr, n) print ( * v) # This code is contributed by Lovely Jain |
C#
// C# program for the above approach using System; using System.Collections.Generic; public class GFG { static int [] kthLargest( int k, int [] arr, int n) { int [] ans = new int [n]; // Creating a min-heap using priority queue List< int > pq = new List< int >(); // Iterating through each element for ( int i = 0; i < n; i++) { // If size of priority // queue is less than k if (pq.Count < k) pq.Add(arr[i]); else { if (arr[i] > pq[0]) { pq.Sort(); pq.RemoveAt(0); pq.Add(arr[i]); } } // If size is less than k if (pq.Count < k) ans[i] = -1; else ans[i] = pq[0]; } return ans; } // Driver Code public static void Main(String[] args) { int n = 6; int [] arr = { 1, 2, 3, 4, 5, 6 }; int k = 4; // Function call int [] v = kthLargest(k, arr, n); foreach ( int it in v) Console.Write(it + " " ); } } // This code contributed by shikhasingrajput |
Javascript
// JavaScript program for the above approach function kthLargest(k, arr, n) { const ans = new Array(n); // Creating a min-heap using priority queue const pq = []; // Iterating through each element for (let i = 0; i < n; i++) { // If size of priority queue is less than k if (pq.length < k) pq.push(arr[i]); else { if (arr[i] > pq[0]) { pq.sort(); pq.shift(); pq.push(arr[i]); } } // If size is less than k if (pq.length < k) ans[i] = -1; else ans[i] = pq[0]; } return ans; } // Driver Code const n = 6; const arr = [1, 2, 3, 4, 5, 6]; const k = 4; // Function call const v = kthLargest(k, arr, n); console.log(v.join( ' ' )); // This code is contributed by aadityamaharshi21. |
-1 -1 -1 1 2 3
Time Complexity: O(N * log K)
Auxiliary Space: O(K)
Related Articles:
K’th Smallest/Largest Element in Unsorted Array | Set 1
K’th Smallest/Largest Element in Unsorted Array | Set 2 (Expected Linear Time)
K’th Smallest/Largest Element in Unsorted Array | Set 3 (Worst Case Linear Time)
This article is contributed by Shivam Gupta. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...