Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Kronecker Product of two matrices

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an m*n matrix A and a p*q matrix B, their Kronecker product C = A tensor B, also called their matrix direct product, is a (m*p) * (n*q) matrix. 

A tensor B =  |a11B   a12B|
              |a21B   a22B|

= |a11b11   a11b12   a12b11  a12b12|
  |a11b21   a11b22   a12b21  a12b22| 
  |a11b31   a11b32   a12b31  a12b32|
  |a21b11   a21b12   a22b11  a22b12|
  |a21b21   a21b22   a22b21  a22b22|
  |a21b31   a21b32   a22b31  a22b32|

Examples:

1. The matrix direct(kronecker) product of the 2×2 matrix A 
   and the 2×2 matrix B is given by the 4×4 matrix :

Input : A = 1 2    B = 0 5
            3 4        6 7

Output : C = 0  5  0  10
             6  7  12 14
             0  15 0  20
             18 21 24 28

2. The matrix direct(kronecker) product of the 2×3 matrix A 
   and the 3×2 matrix B is given by the 6×6 matrix :

Input : A = 1 2    B = 0 5 2
            3 4        6 7 3
            1 0

Output : C = 0      5    2    0     10    4    
             6      7    3   12     14    6    
             0     15    6    0     20    8    
            18     21    9   24     28   12    
             0      5    2    0      0    0    
             6      7    3    0      0    0    
Recommended Practice

Below is the code to find the Kronecker Product of two matrices and stores it as matrix C : 

C++




// C++ code to find the Kronecker Product of two
// matrices and stores it as matrix C
#include <bits/stdc++.h>
using namespace std;
 
// rowa and cola are no of rows and columns
// of matrix A
// rowb and colb are no of rows and columns
// of matrix B
const int cola = 2, rowa = 3, colb = 3, rowb = 2;
 
// Function to computes the Kronecker Product
// of two matrices
void Kroneckerproduct(int A[][cola], int B[][colb])
{
 
    int C[rowa * rowb][cola * colb];
 
    // i loops till rowa
    for (int i = 0; i < rowa; i++) {
 
        // k loops till rowb
        for (int k = 0; k < cola; k++) {
 
            // j loops till cola
            for (int j = 0; j < rowb; j++) {
 
                // l loops till colb
                for (int l = 0; l < colb; l++) {
 
                    // Each element of matrix A is
                    // multiplied by whole Matrix B
                    // resp and stored as Matrix C
                    C[i * rowb + k][j * colb + l]
                        = A[i][j] * B[k][l];
                }
            }
        }
    }
 
    for (int i = 0; i < rowa * rowb; i++) {
        for (int j = 0; j < cola * colb; j++) {
            cout << C[i][j] << " ";
        }
        cout << endl;
    }
}
 
// Driver Code
int main()
{
    int A[3][2] = { { 1, 2 }, { 3, 4 }, { 1, 0 } },
        B[2][3] = { { 0, 5, 2 }, { 6, 7, 3 } };
 
    Kroneckerproduct(A, B);
    return 0;
}
 
// This code is contributed by shubhamsingh10


C




// C code to find the Kronecker Product of two
// matrices and stores it as matrix C
#include <stdio.h>
 
// rowa and cola are no of rows and columns
// of matrix A
// rowb and colb are no of rows and columns
// of matrix B
const int cola = 2, rowa = 3, colb = 3, rowb = 2;
 
// Function to computes the Kronecker Product
// of two matrices
void Kroneckerproduct(int A[][cola], int B[][colb])
{
 
    int C[rowa * rowb][cola * colb];
 
    // i loops till rowa
    for (int i = 0; i < rowa; i++) {
 
        // k loops till rowb
        for (int k = 0; k < cola; k++) {
 
            // j loops till cola
            for (int j = 0; j < rowb; j++) {
 
                // l loops till colb
                for (int l = 0; l < colb; l++) {
 
                    // Each element of matrix A is
                    // multiplied by whole Matrix B
                    // resp and stored as Matrix C
                    C[i * rowb + k][j * colb + l]
                        = A[i][j] * B[k][l];
                }
            }
        }
    }
    for (int i = 0; i < rowa * rowb; i++) {
        for (int j = 0; j < cola * colb; j++) {
            printf("%d ", C[i][j]);
        }
        printf("\n");
    }
}
 
// Driver Code
int main()
{
    int A[3][2] = { { 1, 2 }, { 3, 4 }, { 1, 0 } },
        B[2][3] = { { 0, 5, 2 }, { 6, 7, 3 } };
 
    Kroneckerproduct(A, B);
    return 0;
}


Java




// Java code to find the Kronecker Product of
// two matrices and stores it as matrix C
import java.io.*;
import java.util.*;
 
class GFG {
 
    // rowa and cola are no of rows and columns
    // of matrix A
    // rowb and colb are no of rows and columns
    // of matrix B
    static int cola = 2, rowa = 3, colb = 3, rowb = 2;
 
    // Function to computes the Kronecker Product
    // of two matrices
    static void Kroneckerproduct(int A[][], int B[][])
    {
 
        int[][] C = new int[rowa * rowb][cola * colb];
 
        // i loops till rowa
        for (int i = 0; i < rowa; i++) {
 
            // k loops till rowb
            for (int k = 0; k < cola; k++) {
 
                // j loops till cola
                for (int j = 0; j < rowb; j++) {
 
                    // l loops till colb
                    for (int l = 0; l < colb; l++) {
 
                        // Each element of matrix A is
                        // multiplied by whole Matrix B
                        // resp and stored as Matrix C
                        C[i * rowb + k][j * colb + l]
                            = A[i][j] * B[k][l];
                    }
                }
            }
        }
        for (int i = 0; i < rowa * rowb; i++) {
            for (int j = 0; j < cola * colb; j++) {
                System.out.print(C[i][j] + " ");
            }
            System.out.println();
        }
    }
 
    // Driver program
    public static void main(String[] args)
    {
        int A[][] = { { 1, 2 }, { 3, 4 }, { 1, 0 } };
 
        int B[][] = { { 0, 5, 2 }, { 6, 7, 3 } };
 
        Kroneckerproduct(A, B);
    }
}
 
// This code is contributed by Gitanjali.


Python3




# Python code to find the Kronecker Product of two
# matrices and stores it as matrix C
 
# rowa and cola are no of rows and columns
# of matrix A
# rowb and colb are no of rows and columns
# of matrix B
cola = 2
rowa = 3
colb = 3
rowb = 2;
 
# Function to computes the Kronecker Product
# of two matrices
def Kroneckerproduct(A, B):
 
    C = [[0] * (cola * colb)  for _ in range(rowa * rowb) ]
     
    # i loops till rowa
    for i in range(rowa):
 
        # k loops till rowb
        for k in range(cola):
 
            # j loops till cola
            for j in range(rowb):
 
                # l loops till colb
                for l in range(colb):
 
                    # Each element of matrix A is
                    # multiplied by whole Matrix B
                    # resp and stored as Matrix C
                    C[i * rowb + k][j * colb + l]  = A[i][j] * B[k][l];
                 
    for i in range(rowa * rowb):
        print(*C[i])
     
# Driver Code
A = [[ 1, 2 ], [ 3, 4 ], [ 1, 0 ]];
B = [[ 0, 5, 2 ], [ 6, 7, 3 ]];
 
Kroneckerproduct(A, B);
 
# This code is contributed by phasing17


C#




// Include namespace system
using System;
 
public class GFG
{
   
  // rowa and cola are no of rows and columns
  // of matrix A
  // rowb and colb are no of rows and columns
  // of matrix B
  public static int cola = 2;
  public static int rowa = 3;
  public static int colb = 3;
  public static int rowb = 2;
  // Function to computes the Kronecker Product
  // of two matrices
  public static void Kroneckerproduct(int[,] A, int[,] B)
  {
    int[,] C = new int[GFG.rowa * GFG.rowb,GFG.cola * GFG.colb];
    // i loops till rowa
    for (int i = 0; i < GFG.rowa; i++)
    {
      // k loops till rowb
      for (int k = 0; k < GFG.cola; k++)
      {
        // j loops till cola
        for (int j = 0; j < GFG.rowb; j++)
        {
          // l loops till colb
          for (int l = 0; l < GFG.colb; l++)
          {
            // Each element of matrix A is
            // multiplied by whole Matrix B
            // resp and stored as Matrix C
            C[i * GFG.rowb + k,j * GFG.colb + l] = A[i,j] * B[k,l];
          }
        }
      }
    }
    for (int i = 0; i < GFG.rowa * GFG.rowb; i++)
    {
      for (int j = 0; j < GFG.cola * GFG.colb; j++)
      {
        Console.Write(C[i,j].ToString() + " ");
      }
      Console.WriteLine();
    }
  }
 
  // Driver program
  public static void Main(String[] args)
  {
    int[,] A = {{1, 2}, {3, 4}, {1, 0}};
    int[,] B = {{0, 5, 2}, {6, 7, 3}};
    GFG.Kroneckerproduct(A, B);
  }
}
 
// This code is contributed by aadityaburujwale.


Javascript




// JS code to find the Kronecker Product of two
// matrices and stores it as matrix C
 
 
// rowa and cola are no of rows and columns
// of matrix A
// rowb and colb are no of rows and columns
// of matrix B
let cola = 2, rowa = 3, colb = 3, rowb = 2;
 
// Function to computes the Kronecker Product
// of two matrices
function Kroneckerproduct(A, B)
{
 
    let C = new Array(rowa * rowb)
    for (var i = 0; i < rowa * rowb; i++)
        C[i] = new Array(cola * colb)
 
    // i loops till rowa
    for (let i = 0; i < rowa; i++) {
 
        // k loops till rowb
        for (let k = 0; k < cola; k++) {
 
            // j loops till cola
            for (let j = 0; j < rowb; j++) {
 
                // l loops till colb
                for (let l = 0; l < colb; l++) {
 
                    // Each element of matrix A is
                    // multiplied by whole Matrix B
                    // resp and stored as Matrix C
                    C[i * rowb + k][j * colb + l]
                        = A[i][j] * B[k][l];
                }
            }
        }
    }
 
    for (let i = 0; i < rowa * rowb; i++) {
        for (let j = 0; j < cola * colb; j++) {
            process.stdout.write(C[i][j] + " ");
        }
        console.log()
    }
}
 
// Driver Code
let A = [[ 1, 2 ], [ 3, 4 ], [ 1, 0 ]];
let B = [[ 0, 5, 2 ], [ 6, 7, 3 ]];
 
Kroneckerproduct(A, B);
 
// This code is contributed by phasing17


Output

0 5 2 0 10 4 
6 7 3 12 14 6 
0 15 6 0 20 8 
18 21 9 24 28 12 
0 5 2 0 0 0 
6 7 3 0 0 0 

Time Complexity: O(rowa * rowb * cola * colb)
Auxiliary Space: O((rowa * rowb) * (cola * colb))


My Personal Notes arrow_drop_up
Last Updated : 02 Dec, 2022
Like Article
Save Article
Similar Reads
Related Tutorials