Kronecker Product of two matrices
Given an m*n matrix A and a p*q matrix B, their Kronecker product C = A tensor B, also called their matrix direct product, is a (m*p) * (n*q) matrix.
A tensor B = |a11B a12B| |a21B a22B| = |a11b11 a11b12 a12b11 a12b12| |a11b21 a11b22 a12b21 a12b22| |a11b31 a11b32 a12b31 a12b32| |a21b11 a21b12 a22b11 a22b12| |a21b21 a21b22 a22b21 a22b22| |a21b31 a21b32 a22b31 a22b32|
Examples:
1. The matrix direct(kronecker) product of the 2×2 matrix A and the 2×2 matrix B is given by the 4×4 matrix : Input : A = 1 2 B = 0 5 3 4 6 7 Output : C = 0 5 0 10 6 7 12 14 0 15 0 20 18 21 24 28 2. The matrix direct(kronecker) product of the 2×3 matrix A and the 3×2 matrix B is given by the 6×6 matrix : Input : A = 1 2 B = 0 5 2 3 4 6 7 3 1 0 Output : C = 0 5 2 0 10 4 6 7 3 12 14 6 0 15 6 0 20 8 18 21 9 24 28 12 0 5 2 0 0 0 6 7 3 0 0 0
Below is the code to find the Kronecker Product of two matrices and stores it as matrix C :
C++
// C++ code to find the Kronecker Product of two // matrices and stores it as matrix C #include <bits/stdc++.h> using namespace std; // rowa and cola are no of rows and columns // of matrix A // rowb and colb are no of rows and columns // of matrix B const int cola = 2, rowa = 3, colb = 3, rowb = 2; // Function to computes the Kronecker Product // of two matrices void Kroneckerproduct( int A[][cola], int B[][colb]) { int C[rowa * rowb][cola * colb]; // i loops till rowa for ( int i = 0; i < rowa; i++) { // k loops till rowb for ( int k = 0; k < cola; k++) { // j loops till cola for ( int j = 0; j < rowb; j++) { // l loops till colb for ( int l = 0; l < colb; l++) { // Each element of matrix A is // multiplied by whole Matrix B // resp and stored as Matrix C C[i * rowb + k][j * colb + l] = A[i][j] * B[k][l]; } } } } for ( int i = 0; i < rowa * rowb; i++) { for ( int j = 0; j < cola * colb; j++) { cout << C[i][j] << " " ; } cout << endl; } } // Driver Code int main() { int A[3][2] = { { 1, 2 }, { 3, 4 }, { 1, 0 } }, B[2][3] = { { 0, 5, 2 }, { 6, 7, 3 } }; Kroneckerproduct(A, B); return 0; } // This code is contributed by shubhamsingh10 |
C
// C code to find the Kronecker Product of two // matrices and stores it as matrix C #include <stdio.h> // rowa and cola are no of rows and columns // of matrix A // rowb and colb are no of rows and columns // of matrix B const int cola = 2, rowa = 3, colb = 3, rowb = 2; // Function to computes the Kronecker Product // of two matrices void Kroneckerproduct( int A[][cola], int B[][colb]) { int C[rowa * rowb][cola * colb]; // i loops till rowa for ( int i = 0; i < rowa; i++) { // k loops till rowb for ( int k = 0; k < cola; k++) { // j loops till cola for ( int j = 0; j < rowb; j++) { // l loops till colb for ( int l = 0; l < colb; l++) { // Each element of matrix A is // multiplied by whole Matrix B // resp and stored as Matrix C C[i * rowb + k][j * colb + l] = A[i][j] * B[k][l]; } } } } for ( int i = 0; i < rowa * rowb; i++) { for ( int j = 0; j < cola * colb; j++) { printf ( "%d " , C[i][j]); } printf ( "\n" ); } } // Driver Code int main() { int A[3][2] = { { 1, 2 }, { 3, 4 }, { 1, 0 } }, B[2][3] = { { 0, 5, 2 }, { 6, 7, 3 } }; Kroneckerproduct(A, B); return 0; } |
Java
// Java code to find the Kronecker Product of // two matrices and stores it as matrix C import java.io.*; import java.util.*; class GFG { // rowa and cola are no of rows and columns // of matrix A // rowb and colb are no of rows and columns // of matrix B static int cola = 2 , rowa = 3 , colb = 3 , rowb = 2 ; // Function to computes the Kronecker Product // of two matrices static void Kroneckerproduct( int A[][], int B[][]) { int [][] C = new int [rowa * rowb][cola * colb]; // i loops till rowa for ( int i = 0 ; i < rowa; i++) { // k loops till rowb for ( int k = 0 ; k < cola; k++) { // j loops till cola for ( int j = 0 ; j < rowb; j++) { // l loops till colb for ( int l = 0 ; l < colb; l++) { // Each element of matrix A is // multiplied by whole Matrix B // resp and stored as Matrix C C[i * rowb + k][j * colb + l] = A[i][j] * B[k][l]; } } } } for ( int i = 0 ; i < rowa * rowb; i++) { for ( int j = 0 ; j < cola * colb; j++) { System.out.print(C[i][j] + " " ); } System.out.println(); } } // Driver program public static void main(String[] args) { int A[][] = { { 1 , 2 }, { 3 , 4 }, { 1 , 0 } }; int B[][] = { { 0 , 5 , 2 }, { 6 , 7 , 3 } }; Kroneckerproduct(A, B); } } // This code is contributed by Gitanjali. |
Python3
# Python code to find the Kronecker Product of two # matrices and stores it as matrix C # rowa and cola are no of rows and columns # of matrix A # rowb and colb are no of rows and columns # of matrix B cola = 2 rowa = 3 colb = 3 rowb = 2 ; # Function to computes the Kronecker Product # of two matrices def Kroneckerproduct(A, B): C = [[ 0 ] * (cola * colb) for _ in range (rowa * rowb) ] # i loops till rowa for i in range (rowa): # k loops till rowb for k in range (cola): # j loops till cola for j in range (rowb): # l loops till colb for l in range (colb): # Each element of matrix A is # multiplied by whole Matrix B # resp and stored as Matrix C C[i * rowb + k][j * colb + l] = A[i][j] * B[k][l]; for i in range (rowa * rowb): print ( * C[i]) # Driver Code A = [[ 1 , 2 ], [ 3 , 4 ], [ 1 , 0 ]]; B = [[ 0 , 5 , 2 ], [ 6 , 7 , 3 ]]; Kroneckerproduct(A, B); # This code is contributed by phasing17 |
C#
// Include namespace system using System; public class GFG { // rowa and cola are no of rows and columns // of matrix A // rowb and colb are no of rows and columns // of matrix B public static int cola = 2; public static int rowa = 3; public static int colb = 3; public static int rowb = 2; // Function to computes the Kronecker Product // of two matrices public static void Kroneckerproduct( int [,] A, int [,] B) { int [,] C = new int [GFG.rowa * GFG.rowb,GFG.cola * GFG.colb]; // i loops till rowa for ( int i = 0; i < GFG.rowa; i++) { // k loops till rowb for ( int k = 0; k < GFG.cola; k++) { // j loops till cola for ( int j = 0; j < GFG.rowb; j++) { // l loops till colb for ( int l = 0; l < GFG.colb; l++) { // Each element of matrix A is // multiplied by whole Matrix B // resp and stored as Matrix C C[i * GFG.rowb + k,j * GFG.colb + l] = A[i,j] * B[k,l]; } } } } for ( int i = 0; i < GFG.rowa * GFG.rowb; i++) { for ( int j = 0; j < GFG.cola * GFG.colb; j++) { Console.Write(C[i,j].ToString() + " " ); } Console.WriteLine(); } } // Driver program public static void Main(String[] args) { int [,] A = {{1, 2}, {3, 4}, {1, 0}}; int [,] B = {{0, 5, 2}, {6, 7, 3}}; GFG.Kroneckerproduct(A, B); } } // This code is contributed by aadityaburujwale. |
Javascript
// JS code to find the Kronecker Product of two // matrices and stores it as matrix C // rowa and cola are no of rows and columns // of matrix A // rowb and colb are no of rows and columns // of matrix B let cola = 2, rowa = 3, colb = 3, rowb = 2; // Function to computes the Kronecker Product // of two matrices function Kroneckerproduct(A, B) { let C = new Array(rowa * rowb) for ( var i = 0; i < rowa * rowb; i++) C[i] = new Array(cola * colb) // i loops till rowa for (let i = 0; i < rowa; i++) { // k loops till rowb for (let k = 0; k < cola; k++) { // j loops till cola for (let j = 0; j < rowb; j++) { // l loops till colb for (let l = 0; l < colb; l++) { // Each element of matrix A is // multiplied by whole Matrix B // resp and stored as Matrix C C[i * rowb + k][j * colb + l] = A[i][j] * B[k][l]; } } } } for (let i = 0; i < rowa * rowb; i++) { for (let j = 0; j < cola * colb; j++) { process.stdout.write(C[i][j] + " " ); } console.log() } } // Driver Code let A = [[ 1, 2 ], [ 3, 4 ], [ 1, 0 ]]; let B = [[ 0, 5, 2 ], [ 6, 7, 3 ]]; Kroneckerproduct(A, B); // This code is contributed by phasing17 |
Output
0 5 2 0 10 4 6 7 3 12 14 6 0 15 6 0 20 8 18 21 9 24 28 12 0 5 2 0 0 0 6 7 3 0 0 0
Time Complexity: O(rowa * rowb * cola * colb)
Auxiliary Space: O((rowa * rowb) * (cola * colb))
Please Login to comment...