Klee’s Algorithm (Length Of Union Of Segments of a line)
Given starting and ending positions of segments on a line, the task is to take the union of all given segments and find length covered by these segments.
Examples:
Input : segments[] = {{2, 5}, {4, 8}, {9, 12}} Output : 9 Explanation: segment 1 = {2, 5} segment 2 = {4, 8} segment 3 = {9, 12} If we take the union of all the line segments, we cover distances [2, 8] and [9, 12]. Sum of these two distances is 9 (6 + 3)
Approach:
The algorithm was proposed by Klee in 1977. The time complexity of the algorithm is O (N log N). It has been proven that this algorithm is the fastest (asymptotically) and this problem can not be solved with a better complexity.
Description :
1) Put all the coordinates of all the segments in an auxiliary array points[].
2) Sort it on the value of the coordinates.
3) An additional condition for sorting – if there are equal coordinates, insert the one which is the left coordinate of any segment instead of a right one.
4) Now go through the entire array, with the counter “count” of overlapping segments.
5) If the count is greater than zero, then the result is added to the difference between the points[i] – points[i-1].
6) If the current element belongs to the left end, we increase “count”, otherwise reduce it.
Illustration:
Lets take the example : segment 1 : (2,5) segment 2 : (4,8) segment 3 : (9,12) Counter = result = 0; n = number of segments = 3; for i=0, points[0] = {2, false} points[1] = {5, true} for i=1, points[2] = {4, false} points[3] = {8, true} for i=2, points[4] = {9, false} points[5] = {12, true} Therefore : points = {2, 5, 4, 8, 9, 12} {f, t, f, t, f, t} after applying sorting : points = {2, 4, 5, 8, 9, 12} {f, f, t, t, f, t} Now, for i=0, result = 0; Counter = 1; for i=1, result = 2; Counter = 2; for i=2, result = 3; Counter = 1; for i=3, result = 6; Counter = 0; for i=4, result = 6; Counter = 1; for i=5, result = 9; Counter = 0; Final answer = 9;
C++
// C++ program to implement Klee's algorithm #include<bits/stdc++.h> using namespace std; // Returns sum of lengths covered by union of given // segments int segmentUnionLength( const vector< pair < int , int > > &seg) { int n = seg.size(); // Create a vector to store starting and ending // points vector <pair < int , bool > > points(n * 2); for ( int i = 0; i < n; i++) { points[i*2] = make_pair(seg[i].first, false ); points[i*2 + 1] = make_pair(seg[i].second, true ); } // Sorting all points by point value sort(points.begin(), points.end()); int result = 0; // Initialize result // To keep track of counts of // current open segments // (Starting point is processed, // but ending point // is not) int Counter = 0; // Traverse through all points for (unsigned i=0; i<n*2; i++) { // If there are open points, then we add the // difference between previous and current point. // This is interesting as we don't check whether // current point is opening or closing, if (Counter) result += (points[i].first - points[i-1].first); // If this is an ending point, reduce, count of // open points. (points[i].second)? Counter-- : Counter++; } return result; } // Driver program for the above code int main() { vector< pair < int , int > > segments; segments.push_back(make_pair(2, 5)); segments.push_back(make_pair(4, 8)); segments.push_back(make_pair(9, 12)); cout << segmentUnionLength(segments) << endl; return 0; } |
Java
// Java program to implement Klee's algorithm import java.io.*; import java.util.*; class GFG { // to use create a pair of segments static class SegmentPair { int x,y; SegmentPair( int xx, int yy){ this .x = xx; this .y = yy; } } //to create a pair of points static class PointPair{ int x; boolean isEnding; PointPair( int xx, boolean end){ this .x = xx; this .isEnding = end; } } // creates the comparator for comparing objects of PointPair class static class Comp implements Comparator<PointPair> { // override the compare() method public int compare(PointPair p1, PointPair p2) { if (p1.x < p2.x) { return - 1 ; } else { if (p1.x == p2.x){ return 0 ; } else { return 1 ; } } } } public static int segmentUnionLength(List<SegmentPair> segments){ int n = segments.size(); // Create a list to store // starting and ending points List<PointPair> points = new ArrayList<>(); for ( int i = 0 ; i < n; i++){ points.add( new PointPair(segments.get(i).x, false )); points.add( new PointPair(segments.get(i).y, true )); } // Sorting all points by point value Collections.sort(points, new Comp()); int result = 0 ; // Initialize result // To keep track of counts of // current open segments // (Starting point is processed, // but ending point // is not) int Counter = 0 ; // Traverse through all points for ( int i = 0 ; i < 2 * n; i++) { // If there are open points, then we add the // difference between previous and current point. // This is interesting as we don't check whether // current point is opening or closing, if (Counter != 0 ) { result += (points.get(i).x - points.get(i- 1 ).x); } // If this is an ending point, reduce, count of // open points. if (points.get(i).isEnding) { Counter--; } else { Counter++; } } return result; } // Driver Code public static void main (String[] args) { List<SegmentPair> segments = new ArrayList<>(); segments.add( new SegmentPair( 2 , 5 )); segments.add( new SegmentPair( 4 , 8 )); segments.add( new SegmentPair( 9 , 12 )); System.out.println(segmentUnionLength(segments)); } } // This code is contributed by shruti456rawal |
Python3
# Python program for the above approach def segmentUnionLength(segments): # Size of given segments list n = len (segments) # Initialize empty points container points = [ None ] * (n * 2 ) # Create a vector to store starting # and ending points for i in range (n): points[i * 2 ] = (segments[i][ 0 ], False ) points[i * 2 + 1 ] = (segments[i][ 1 ], True ) # Sorting all points by point value points = sorted (points, key = lambda x: x[ 0 ]) # Initialize result as 0 result = 0 # To keep track of counts of current open segments # (Starting point is processed, but ending point # is not) Counter = 0 # Traverse through all points for i in range ( 0 , n * 2 ): # If there are open points, then we add the # difference between previous and current point. if (i > 0 ) & (points[i][ 0 ] > points[i - 1 ][ 0 ]) & (Counter > 0 ): result + = (points[i][ 0 ] - points[i - 1 ][ 0 ]) # If this is an ending point, reduce, count of # open points. if points[i][ 1 ]: Counter - = 1 else : Counter + = 1 return result # Driver code if __name__ = = '__main__' : segments = [( 2 , 5 ), ( 4 , 8 ), ( 9 , 12 )] print (segmentUnionLength(segments)) |
C#
using System; using System.Collections; using System.Collections.Generic; using System.Linq; // C# program to implement Klee's algorithm class HelloWorld { class GFG : IComparer<KeyValuePair< int , bool >> { public int Compare(KeyValuePair< int , bool > x,KeyValuePair< int , bool > y) { // CompareTo() method return x.Key.CompareTo(y.Key); } } // Returns sum of lengths covered by union of given // segments public static int segmentUnionLength(List<KeyValuePair< int , int >> seg) { int n = seg.Count; // Create a vector to store starting and ending // points List<KeyValuePair< int , bool >> points = new List<KeyValuePair< int , bool >>(); for ( int i = 0; i < 2*n; i++){ points.Add( new KeyValuePair< int , bool > (0, true )); } for ( int i = 0; i < n; i++) { points[i*2] = new KeyValuePair< int , bool > (seg[i].Key, false ); points[i*2 + 1] = new KeyValuePair< int , bool > (seg[i].Value, true ); } // Sorting all points by point value GFG gg = new GFG(); points.Sort(gg); int result = 0; // Initialize result // To keep track of counts of // current open segments // (Starting point is processed, // but ending point // is not) int Counter = 0; // Traverse through all points for ( int i=0; i<n*2; i++) { // If there are open points, then we add the // difference between previous and current point. // This is interesting as we don't check whether // current point is opening or closing, if (Counter != 0) result += (points[i].Key - points[i-1].Key); // If this is an ending point, reduce, count of // open points. if (points[i].Value != false ){ Counter--; } else { Counter++; } } return result; } static void Main() { List<KeyValuePair< int , int >> segments = new List<KeyValuePair< int , int >> (); segments.Add( new KeyValuePair< int , int > (2, 5)); segments.Add( new KeyValuePair< int , int > (4, 8)); segments.Add( new KeyValuePair< int , int > (9, 12)); Console.WriteLine(segmentUnionLength(segments)); } } // The code is contributed by Nidhi goel. |
Javascript
// JavaScript program to implement Klee's algorithm // Returns sum of lengths covered by union of given // segments function segmentUnionLength(seg) { let n = seg.length; // Create a vector to store starting and ending // points let points = new Array(2*n); for (let i = 0; i < n; i++) { points[i*2] = [seg[i][0], false ]; points[i*2 + 1] = [seg[i][1], true ]; } // Sorting all points by point value points.sort( function (a, b){ return a[0] - b[0]; }); let result = 0; // Initialize result // To keep track of counts of // current open segments // (Starting point is processed, // but ending point // is not) let Counter = 0; // Traverse through all points for (let i=0; i<n*2; i++) { // If there are open points, then we add the // difference between previous and current point. // This is interesting as we don't check whether // current point is opening or closing, if (Counter) result += (points[i][0] - points[i-1][0]); // If this is an ending point, reduce, count of // open points. if (points[i][1]){ Counter = Counter - 1; } else { Counter = Counter + 1; } } return result; } let segments = new Array(); segments.push([2, 5]); segments.push([4, 8]); segments.push([9, 12]); console.log(segmentUnionLength(segments)); // The code is contributed by Gautam goel (gautamgoel962) |
9
Time Complexity : O(n * log n)
Auxiliary Space: O(n)
This article is contributed by Aarti_Rathi and Abhinandan Mittal. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...