Karatsuba algorithm for fast multiplication using Divide and Conquer algorithm
Given two binary strings that represent value of two integers, find the product of two strings. For example, if the first bit string is “1100” and second bit string is “1010”, output should be 120.
For simplicity, let the length of two strings be same and be n.
A Naive Approach is to follow the process we study in school. One by one take all bits of second number and multiply it with all bits of first number. Finally add all multiplications. This algorithm takes O(n^2) time.
Using Divide and Conquer, we can multiply two integers in less time complexity. We divide the given numbers in two halves. Let the given numbers be X and Y.
For simplicity let us assume that n is even
X = Xl*2n/2 + Xr [Xl and Xr contain leftmost and rightmost n/2 bits of X] Y = Yl*2n/2 + Yr [Yl and Yr contain leftmost and rightmost n/2 bits of Y]
The product XY can be written as follows.
XY = (Xl*2n/2 + Xr)(Yl*2n/2 + Yr) = 2n XlYl + 2n/2(XlYr + XrYl) + XrYr
If we take a look at the above formula, there are four multiplications of size n/2, so we basically divided the problem of size n into four sub-problems of size n/2. But that doesn’t help because the solution of recurrence T(n) = 4T(n/2) + O(n) is O(n^2). The tricky part of this algorithm is to change the middle two terms to some other form so that only one extra multiplication would be sufficient. The following is tricky expression for middle two terms.
XlYr + XrYl = (Xl + Xr)(Yl + Yr) - XlYl- XrYr
So the final value of XY becomes
XY = 2n XlYl + 2n/2 * [(Xl + Xr)(Yl + Yr) - XlYl - XrYr] + XrYr
With above trick, the recurrence becomes T(n) = 3T(n/2) + O(n) and solution of this recurrence is O(n1.59).
What if the lengths of input strings are different and are not even? To handle the different length case, we append 0’s in the beginning. To handle odd length, we put floor(n/2) bits in left half and ceil(n/2) bits in right half. So the expression for XY changes to following.
XY = 22ceil(n/2) XlYl + 2ceil(n/2) * [(Xl + Xr)(Yl + Yr) - XlYl - XrYr] + XrYr
The above algorithm is called Karatsuba algorithm and it can be used for any base.
Following is C++ implementation of above algorithm.
C++
// C++ implementation of Karatsuba algorithm for bit string multiplication. #include<iostream> #include<stdio.h> using namespace std; // FOLLOWING TWO FUNCTIONS ARE COPIED FROM http://goo.gl/q0OhZ // Helper method: given two unequal sized bit strings, converts them to // same length by adding leading 0s in the smaller string. Returns the // the new length int makeEqualLength(string &str1, string &str2) { int len1 = str1.size(); int len2 = str2.size(); if (len1 < len2) { for ( int i = 0 ; i < len2 - len1 ; i++) str1 = '0' + str1; return len2; } else if (len1 > len2) { for ( int i = 0 ; i < len1 - len2 ; i++) str2 = '0' + str2; } return len1; // If len1 >= len2 } // The main function that adds two bit sequences and returns the addition string addBitStrings( string first, string second ) { string result; // To store the sum bits // make the lengths same before adding int length = makeEqualLength(first, second); int carry = 0; // Initialize carry // Add all bits one by one for ( int i = length-1 ; i >= 0 ; i--) { int firstBit = first.at(i) - '0' ; int secondBit = second.at(i) - '0' ; // boolean expression for sum of 3 bits int sum = (firstBit ^ secondBit ^ carry)+ '0' ; result = ( char )sum + result; // boolean expression for 3-bit addition carry = (firstBit&secondBit) | (secondBit&carry) | (firstBit&carry); } // if overflow, then add a leading 1 if (carry) result = '1' + result; return result; } // A utility function to multiply single bits of strings a and b int multiplyiSingleBit(string a, string b) { return (a[0] - '0' )*(b[0] - '0' ); } // The main function that multiplies two bit strings X and Y and returns // result as long integer long int multiply(string X, string Y) { // Find the maximum of lengths of x and Y and make length // of smaller string same as that of larger string int n = makeEqualLength(X, Y); // Base cases if (n == 0) return 0; if (n == 1) return multiplyiSingleBit(X, Y); int fh = n/2; // First half of string, floor(n/2) int sh = (n-fh); // Second half of string, ceil(n/2) // Find the first half and second half of first string. // Refer http://goo.gl/lLmgn for substr method string Xl = X.substr(0, fh); string Xr = X.substr(fh, sh); // Find the first half and second half of second string string Yl = Y.substr(0, fh); string Yr = Y.substr(fh, sh); // Recursively calculate the three products of inputs of size n/2 long int P1 = multiply(Xl, Yl); long int P2 = multiply(Xr, Yr); long int P3 = multiply(addBitStrings(Xl, Xr), addBitStrings(Yl, Yr)); // Combine the three products to get the final result. return P1*(1<<(2*sh)) + (P3 - P1 - P2)*(1<<sh) + P2; } // Driver program to test above functions int main() { printf ( "%ld\n" , multiply( "1100" , "1010" )); printf ( "%ld\n" , multiply( "110" , "1010" )); printf ( "%ld\n" , multiply( "11" , "1010" )); printf ( "%ld\n" , multiply( "1" , "1010" )); printf ( "%ld\n" , multiply( "0" , "1010" )); printf ( "%ld\n" , multiply( "111" , "111" )); printf ( "%ld\n" , multiply( "11" , "11" )); } |
Python3
# Python implementation of Karatsuba algorithm for bit string multiplication. # Helper method: given two unequal sized bit strings, converts them to # same length by adding leading 0s in the smaller string. Returns the # the new length def make_equal_length(str1, str2): len1 = len (str1) len2 = len (str2) if len1 < len2: for i in range (len2 - len1): str1 = '0' + str1 return len2 elif len1 > len2: for i in range (len1 - len2): str2 = '0' + str2 return len1 # If len1 >= len2 # The main function that adds two bit sequences and returns the addition def add_bit_strings(first, second): result = "" # To store the sum bits # make the lengths same before adding length = make_equal_length(first, second) carry = 0 # Initialize carry # Add all bits one by one for i in range (length - 1 , - 1 , - 1 ): first_bit = int (first[i]) second_bit = int (second[i]) # boolean expression for sum of 3 bits sum = (first_bit ^ second_bit ^ carry) + ord ( '0' ) result = chr ( sum ) + result # boolean expression for 3-bit addition carry = (first_bit & second_bit) | (second_bit & carry) | (first_bit & carry) # if overflow, then add a leading 1 if carry: result = '1' + result return result # A utility function to multiply single bits of strings a and b def multiply_single_bit(a, b): return int (a[ 0 ]) * int (b[ 0 ]) # The main function that multiplies two bit strings X and Y and returns # result as long integer def multiply(X, Y): # Find the maximum of lengths of x and Y and make length # of smaller string same as that of larger string n = max ( len (X), len (Y)) X = X.zfill(n) Y = Y.zfill(n) # Base cases if n = = 0 : return 0 if n = = 1 : return int (X[ 0 ]) * int (Y[ 0 ]) fh = n / / 2 # First half of string sh = n - fh # Second half of string # Find the first half and second half of first string. Xl = X[:fh] Xr = X[fh:] # Find the first half and second half of second string Yl = Y[:fh] Yr = Y[fh:] # Recursively calculate the three products of inputs of size n/2 P1 = multiply(Xl, Yl) P2 = multiply(Xr, Yr) P3 = multiply( str ( int (Xl, 2 ) + int (Xr, 2 )), str ( int (Yl, 2 ) + int (Yr, 2 ))) # Combine the three products to get the final result. return P1 * ( 1 <<( 2 * sh)) + (P3 - P1 - P2) * ( 1 <<sh) + P2 if __name__ = = '__main__' : print (multiply( "1100" , "1010" )) print (multiply( "110" , "1010" )) print (multiply( "11" , "1010" )) print (multiply( "1" , "1010" )) print (multiply( "0" , "1010" )) print (multiply( "111" , "111" )) print (multiply( "11" , "11" )) |
C#
// C# implementation of Karatsuba algorithm for bit string // multiplication. using System; using System.Collections.Generic; class GFG { // Convert bit strings to same length by adding leading // 0s in the smaller string. // Returns the new length. private static int MakeEqualLength( ref string str1, ref string str2) { int len1 = str1.Length; int len2 = str2.Length; if (len1 < len2) { str1 = str1.PadLeft(len2 - len1 + len1, '0' ); return len2; } else if (len1 > len2) { str2 = str2.PadLeft(len1 - len2 + len2, '0' ); } return len1; // If len1 >= len2 } // Adds two bit sequences and returns the addition private static string AddBitStrings( string first, string second) { string result = "" ; // To store the sum bits // make the lengths same before adding int length = MakeEqualLength( ref first, ref second); int carry = 0; // Initialize carry // Add all bits one by one for ( int i = length - 1; i >= 0; i--) { int first_bit = int .Parse(first[i].ToString()); int second_bit = int .Parse(second[i].ToString()); // boolean expression for sum of 3 bits int sum = (first_bit ^ second_bit ^ carry) + '0' ; result = ( char )sum + result; // boolean expression for 3-bit addition carry = (first_bit & second_bit) | (second_bit & carry) | (first_bit & carry); } // if overflow, then add a leading 1 if (carry != 0) { result = '1' + result; } return result; } // Multiplies single bits of strings a and b private static int MultiplySingleBit( char a, char b) { return int .Parse(a.ToString()) * int .Parse(b.ToString()); } // Multiplies two bit strings X and Y and returns result // as long integer private static long Multiply( string X, string Y) { // Find the maximum of lengths of x and Y and make // length of smaller string same as that of larger // string int n = Math.Max(X.Length, Y.Length); X = X.PadLeft(n, '0' ); Y = Y.PadLeft(n, '0' ); // Base cases if (n == 0) return 0; if (n == 1) return MultiplySingleBit(X[0], Y[0]); int fh = n / 2; // First half of string int sh = n - fh; // Second half of string // Find the first half and second half of first // string. string Xl = X.Substring(0, fh); string Xr = X.Substring(fh); // Find the first half and second half of second // string string Yl = Y.Substring(0, fh); string Yr = Y.Substring(fh); // Recursively calculate the three products of // inputs of size n/2 long P1 = Multiply(Xl, Yl); long P2 = Multiply(Xr, Yr); long P3 = Multiply(AddBitStrings(Xl, Xr), AddBitStrings(Yl, Yr)); // Combine the three products to get the final // result. return P1 * (1L << (2 * sh)) + (P3 - P1 - P2) * (1L << sh) + P2; } // Test the implementation public static void Main( string [] args) { Console.WriteLine(Multiply( "1100" , "1010" )); Console.WriteLine(Multiply( "110" , "1010" )); Console.WriteLine(Multiply( "11" , "1010" )); Console.WriteLine(Multiply( "1" , "1010" )); Console.WriteLine(Multiply( "0" , "1010" )); Console.WriteLine(Multiply( "111" , "111" )); Console.WriteLine(Multiply( "11" , "11" )); } } |
Javascript
// JavaScript implementation of Karatsuba algorithm for bit string multiplication. // Helper method: given two unequal sized bit strings, converts them to // same length by adding leading 0s in the smaller string. Returns the // the new length function make_equal_length(str1, str2) { let len1 = str1.length; let len2 = str2.length; if (len1 < len2) { for (let i = 0; i < len2 - len1; i++) { str1 = '0' + str1; } return len2; } else if (len1 > len2) { for (let i = 0; i < len1 - len2; i++) { str2 = '0' + str2; } } return len1; // If len1 >= len2 } // The main function that adds two bit sequences and returns the addition function add_bit_strings(first, second) { let result = "" ; // To store the sum bits // make the lengths same before adding let length = make_equal_length(first, second); let carry = 0; // Initialize carry // Add all bits one by one for (let i = length - 1; i >= 0; i--) { let first_bit = parseInt(first[i]); let second_bit = parseInt(second[i]); // boolean expression for sum of 3 bits let sum = (first_bit ^ second_bit ^ carry) + '0' .charCodeAt(0); result = String.fromCharCode(sum) + result; // boolean expression for 3-bit addition carry = (first_bit & second_bit) | (second_bit & carry) | (first_bit & carry); } // if overflow, then add a leading 1 if (carry) { result = '1' + result; } return result; } // A utility function to multiply single bits of strings a and b function multiply_single_bit(a, b) { return parseInt(a[0]) * parseInt(b[0]); } // The main function that multiplies two bit strings X and Y and returns // result as long integer function multiply(X, Y) { // Find the maximum of lengths of x and Y and make length // of smaller string same as that of larger string let n = Math.max(X.length, Y.length); X = X.padStart(n, '0' ); Y = Y.padStart(n, '0' ); // Base cases if (n == 0) return 0; if (n == 1) return parseInt(X[0]) * parseInt(Y[0]); let fh = Math.floor(n / 2); // First half of string let sh = n - fh; // Second half of string // Find the first half and second half of first string. let Xl = X.slice(0, fh); let Xr = X.slice(fh); // Find the first half and second half of second string let Yl = Y.slice(0, fh); let Yr = Y.slice(fh); // Recursively calculate the three products of inputs of size n/2 let P1 = multiply(Xl, Yl); let P2 = multiply(Xr, Yr); let P3 = multiply((parseInt(Xl, 2) + parseInt(Xr, 2)).toString(2), (parseInt(Yl, 2) + parseInt(Yr, 2)).toString(2)); // Combine the three products to get the final result. return P1 * (1 << (2 * sh)) + (P3 - P1 - P2) * (1 << sh) + P2 } console.log(multiply( "1100" , "1010" )) console.log(multiply( "110" , "1010" )) console.log(multiply( "11" , "1010" )) console.log(multiply( "1" , "1010" )) console.log(multiply( "0" , "1010" )) console.log(multiply( "111" , "111" )) console.log(multiply( "11" , "11" )) |
Java
// Java implementation of Karatsuba algorithm for bit string multiplication. public class GFG { // Driver Code public static void main(String[] args) { System.out.println(multiply( "1100" , "1010" )); System.out.println(multiply( "110" , "1010" )); System.out.println(multiply( "11" , "1010" )); System.out.println(multiply( "1" , "1010" )); System.out.println(multiply( "0" , "1010" )); System.out.println(multiply( "111" , "111" )); System.out.println(multiply( "11" , "11" )); } // Helper method: given two unequal sized bit strings, // converts them to same length by adding leading 0s in // the smaller string. Returns the the new length private static int makeEqualLength(StringBuilder str1, StringBuilder str2) { int len1 = str1.length(); int len2 = str2.length(); if (len1 < len2) { for ( int i = 0 ; i < len2 - len1; i++) { str1.insert( 0 , '0' ); } return len2; } else if (len1 > len2) { for ( int i = 0 ; i < len1 - len2; i++) { str2.insert( 0 , '0' ); } } return len1; // If len1 >= len2 } // The main function that adds two bit sequences and // returns the addition private static StringBuilder addBitStrings(StringBuilder first, StringBuilder second) { StringBuilder result = new StringBuilder(); int length = makeEqualLength(first, second); int carry = 0 ; // Add all bits one by one for ( int i = length - 1 ; i >= 0 ; i--) { int firstBit = first.charAt(i) - '0' ; int secondBit = second.charAt(i) - '0' ; // boolean expression for sum of 3 bits int sum = (firstBit ^ secondBit ^ carry) + '0' ; result.insert( 0 , ( char )sum); // boolean expression for 3-bit addition carry = (firstBit & secondBit) | (secondBit & carry) | (firstBit & carry); } // if overflow, then add a leading 1 if (carry == 1 ) { result.insert( 0 , '1' ); } return result; } // A utility function to multiply single bits of strings // a and b private static int multiplySingleBit( int a, int b) { return a * b; } // The main function that multiplies two bit strings X // and Y and returns result as long integer public static long multiply(String X, String Y) { // Find the maximum of lengths of X and Y and make // length of smaller string same as that of larger // string int n = Math.max(X.length(), Y.length()); X = String.format( "%" + n + "s" , X) .replace( ' ' , '0' ); Y = String.format( "%" + n + "s" , Y) .replace( ' ' , '0' ); // Base cases if (n == 0 ) return 0 ; if (n == 1 ) return Integer.parseInt(X) * Integer.parseInt(Y); int fh = n / 2 ; // First half of string int sh = n - fh; // Second half of string // Find the first half and second half of first // string. String Xl = X.substring( 0 , fh); String Xr = X.substring(fh); // Find the first half and second half of second // string String Yl = Y.substring( 0 , fh); String Yr = Y.substring(fh); // Recursively calculate the three products of // inputs of size n/2 long P1 = multiply(Xl, Yl); long P2 = multiply(Xr, Yr); long P3 = multiply(Integer.toBinaryString( Integer.parseInt(Xl, 2 ) + Integer.parseInt(Xr, 2 )), Integer.toBinaryString( Integer.parseInt(Yl, 2 ) + Integer.parseInt(Yr, 2 ))); // Combine the three products to get the final // result. return P1 * (1L << ( 2 * sh)) + (P3 - P1 - P2) * (1L << sh) + P2; } } |
120 60 30 10 0 49 9
Time Complexity: Time complexity of the above solution is O(nlog23) = O(n1.59).
Time complexity of multiplication can be further improved using another Divide and Conquer algorithm, fast Fourier transform. We will soon be discussing fast Fourier transform as a separate post.
Auxiliary Space: O(n)
Exercise:
The above program returns a long int value and will not work for big strings. Extend the above program to return a string instead of a long int value.
Solution:
Multiplication process for large numbers is an important problem in Computer Science. Given approach uses Divide and Conquer methodology.
Run the code to see the time complexity comparison for normal Binary Multiplication and Karatsuba Algorithm.
You can see the full code in this repository
Examples:
First Binary Input : 101001010101010010101001010100101010010101010010101 Second Binary Input : 101001010101010010101001010100101010010101010010101 Decimal Output : Not Representable Output : 2.1148846e+30
First Binary Input : 1011 Second Binary Input : 1000 Decimal Output : 88 Output : 5e-05
C++
#include <iostream> #include <ctime> #include <fstream> #include <string.h> #include <cmath> #include <sstream> using namespace std; // classical method class class BinaryMultiplier { public : string MakeMultiplication(string,string); string MakeShifting(string, int ); string addBinary(string,string); void BinaryStringToDecimal(string); }; // karatsuba method class class Karatsuba { public : int lengthController(string &,string &); string addStrings(string,string); string multiply(string,string); string DecimalToBinary( long long int ); string Subtraction(string,string); string MakeShifting(string, int ); }; // this function get strings and go over str2 bit // if it sees 1 it calculates the shifted version according to position bit // Makes add operation for binary strings // returns result string string BinaryMultiplier::MakeMultiplication(string str1, string str2) { string allSum = "" ; for ( int j = 0 ; j<str2.length(); j++) { int secondDigit = str2[j] - '0' ; if (secondDigit == 1) { string shifted = MakeShifting(str1,str2.size()-(j+1)); allSum = addBinary(shifted, allSum); } else { continue ; } } return allSum; } // this function adds binary strings with carry string BinaryMultiplier::addBinary(string a, string b) { string result = "" ; int s = 0; int i = a.size() - 1; int j = b.size() - 1; while (i >= 0 || j >= 0 || s == 1) { s += ((i >= 0)? a[i] - '0' : 0); s += ((j >= 0)? b[j] - '0' : 0); result = char (s % 2 + '0' ) + result; s /= 2; i--; j--; } return result; } // this function shifts the given string according to given number // returns shifted version string BinaryMultiplier::MakeShifting(string str, int stepnum) { string shifted = str; for ( int i = 0 ; i < stepnum ; i++) shifted = shifted + '0' ; return shifted; } // this function converts Binary String Number to Decimal Number // After 32 bits it gives 0 because it overflows the size of int void BinaryMultiplier::BinaryStringToDecimal(string result) { cout<< "Binary Result : " <<result<<endl; unsigned long long int val = 0; for ( int i = result.length()-1; i >= 0; i--) { if (result[i] == '1' ) { val += pow (2,(result.length()-1)-i); } } cout<< "Decimal Result (Not proper for Large Binary Numbers):" <<val<<endl; } // this function controls lengths of strings and make their lengths equal // returns the maximum length int Karatsuba::lengthController(string &str1, string &str2) { int len1 = str1.size(); int len2 = str2.size(); if (len1 < len2) { for ( int i = 0 ; i < len2 - len1 ; i++) str1 = '0' + str1; return len2; } else if (len1 > len2) { for ( int i = 0 ; i < len1 - len2 ; i++) str2 = '0' + str2; } return len1; } // this function add strings with carry // uses one by one bit addition methodology // returns result string string Karatsuba::addStrings(string first, string second) { string result; // To store the sum bits // make the lengths same before adding int length = lengthController(first, second); int carry = 0; // Initialize carry // Add all bits one by one for ( int i = length-1 ; i >= 0 ; i--) { int firstBit = first.at(i) - '0' ; int secondBit = second.at(i) - '0' ; // boolean expression for sum of 3 bits int sum = (firstBit ^ secondBit ^ carry)+ '0' ; result = ( char )sum + result; // Boolean expression for 3-bit addition carry = (firstBit&secondBit) | (secondBit&carry) | (firstBit&carry); } // if overflow, then add a leading 1 if (carry) { result = '1' + result; } return result; } // this function converts decimal number to binary string string Karatsuba::DecimalToBinary( long long int number) { string result = "" ; if (number <= 0) { return "0" ; } else { int i = 0; while (number > 0) { long long int num= number % 2; stringstream ss; ss<<num; result = ss.str() + result; number = number / 2; i++; } return result; } } // this function makes binary string subtraction with overflow string Karatsuba::Subtraction(string lhs, string rhs) { int length = lengthController(lhs, rhs); int diff; string result; for ( int i = length-1; i >= 0; i--) { diff = (lhs[i]- '0' ) - (rhs[i]- '0' ); if (diff >= 0) { result = DecimalToBinary(diff) + result; } else { for ( int j = i-1; j>=0; j--) { lhs[j] = ((lhs[j]- '0' ) - 1) % 10 + '0' ; if (lhs[j] != '1' ) { break ; } } result = DecimalToBinary(diff+2) + result; } } return result; } // this function makes shifting string Karatsuba::MakeShifting(string str, int stepnum) { string shifted = str; for ( int i = 0 ; i < stepnum ; i++) shifted = shifted + '0' ; return shifted; } // this function is the core of the Karatsuba // divides problem into 4 subproblems // recursively multiplies them // returns the result string string Karatsuba::multiply(string X, string Y) { int n = lengthController(X, Y); if (n == 1) return ((Y[0]- '0' == 1) && (X[0]- '0' == 1)) ? "1" : "0" ; int fh = n/2; // First half of string, floor(n/2) int sh = (n-fh); // Second half of string, ceil(n/2) // Find the first half and second half of first string. string Xl = X.substr(0, fh); string Xr = X.substr(fh, sh); // Find the first half and second half of second string string Yl = Y.substr(0, fh); string Yr = Y.substr(fh, sh); // Recursively calculate the three products of inputs of size n/2 string P1 = multiply(Xl, Yl); string P2 = multiply(Xr, Yr); string P3 = multiply(addStrings(Xl, Xr), addStrings(Yl, Yr)); // return added string version return addStrings(addStrings(MakeShifting(P1, 2*(n-n/2)),P2),MakeShifting(Subtraction(P3,addStrings(P1,P2)), n-(n/2))); } int main( int argc, const char * argv[]) { // get the binary numbers as strings string firstNumber,secondNumber; cout<< "Please give the First Binary number : " ; cin>>firstNumber; cout<<endl<< "Please give the Second Binary number : " ; cin>>secondNumber; cout << endl; // make the initial lengths equal by adding zeros int len1 = firstNumber.size(); int len2 = secondNumber.size(); int general_len = firstNumber.size(); if (len1 < len2) { for ( int i = 0 ; i < len2 - len1 ; i++) firstNumber = '0' + firstNumber; general_len = firstNumber.size(); } else if (len1 > len2) { for ( int i = 0 ; i < len1 - len2 ; i++) secondNumber = '0' + secondNumber; general_len = secondNumber.size(); } // In classical methodology Binary String Multiplication cout<< "Classical Algorithm : " <<endl; BinaryMultiplier newobj; const clock_t classical_time = clock (); string classic = newobj.MakeMultiplication(firstNumber, secondNumber); cout << float ( clock () - classical_time ) / CLOCKS_PER_SEC<<endl<<endl; float c_time = float ( clock () - classical_time ) / CLOCKS_PER_SEC; newobj.BinaryStringToDecimal(classic); // Using Karatsuba Multiplication Algorithm Binary String Multiplication cout<<endl<< "Karatsuba Algorithm : " <<endl; Karatsuba obj; const clock_t karatsuba_time = clock (); string karatsuba = obj.multiply(firstNumber, secondNumber); cout << float ( clock () - karatsuba_time ) / CLOCKS_PER_SEC<<endl<<endl; float k_time = float ( clock () - classical_time ) / CLOCKS_PER_SEC; newobj.BinaryStringToDecimal(karatsuba); return 0; } |
Time Complexity:
The time complexity of both Classical and Karatsuba methods of binary string multiplication is O(n^2).
In the classical method, the time complexity is O(n^2) because the loop is iterated n times. The time complexity of the addBinary() method is constant because the loop runs with a maximum of two iterations.
In the Karatsuba method, the time complexity is O(n^2) because the ‘multiply’ method of the Karatsuba class is called recursively for each of the three products. The time complexity of the addStrings() method is constant because the loop runs with a maximum of two iterations.
Auxiliary Space :
The Auxiliary Space of both Classical and Karatsuba methods of binary string multiplication is O(n).
In the classical method, the Auxiliary Space is O(n) because the loop is iterated n times and a single string is used to store the result. The space complexity of the addBinary() method is constant because the loop runs with a maximum of two iterations.
In the Karatsuba method, the auxiliary Space is O(n) because the ‘multiply’ method of the Karatsuba class is called recursively for each of the three products.
Related Article :
Multiply Large Numbers Represented as Strings
Please Login to comment...