Juggler Sequence | Set 2 (Using Recursion)
Juggler Sequence is a series of integer number in which the first term starts with a positive integer number a and the remaining terms are generated from the immediate previous term using the below recurrence relation :
Juggler Sequence starting with number 3:
5, 11, 36, 6, 2, 1
Juggler Sequence starting with number 9:
9, 27, 140, 11, 36, 6, 2, 1
Given a number N, we have to print the Juggler Sequence for this number as the first term of the sequence.
Examples:
Input: N = 9
Output: 9, 27, 140, 11, 36, 6, 2, 1
We start with 9 and use above formula to get next terms.Input: N = 6
Output: 6, 2, 1
Iterative approach: We have already seen the iterative approach in Set 1 of this problem.
Recursive approach: In this approach, we will recursively traverse starting from N. Follow the steps below for each recursive step
- Output the value of N
- If N has reached 1 end the recursion
- Otherwise, follow the formula based on the number being odd or even and call the recursive function on the newly derived number.
Below is the implementation of the approach:
C++
// C++ code for the above approach #include <bits/stdc++.h> using namespace std; // Recursive function to print // the juggler sequence void jum_sequence( int N) { cout << N << " " ; if (N <= 1) return ; else if (N % 2 == 0) { N = floor ( sqrt (N)); jum_sequence(N); } else { N = floor (N * sqrt (N)); jum_sequence(N); } } // Driver code int main() { // Juggler sequence starting with 10 jum_sequence(10); return 0; } // This code is contributed by Potta Lokesh |
Java
// Java code for the above approach class GFG { // Recursive function to print // the juggler sequence public static void jum_sequence( int N) { System.out.print(N + " " ); if (N <= 1 ) return ; else if (N % 2 == 0 ) { N = ( int ) (Math.floor(Math.sqrt(N))); jum_sequence(N); } else { N = ( int ) Math.floor(N * Math.sqrt(N)); jum_sequence(N); } } // Driver code public static void main(String args[]) { // Juggler sequence starting with 10 jum_sequence( 10 ); } } // This code is contributed by Saurabh Jaiswal |
Python3
# Python code to implement the above approach # Recursive function to print # the juggler sequence def jum_sequence(N): print (N, end = " " ) if (N = = 1 ): return elif N & 1 = = 0 : N = int ( pow (N, 0.5 )) jum_sequence(N) else : N = int ( pow (N, 1.5 )) jum_sequence(N) # Juggler sequence starting with 10 jum_sequence( 10 ) |
C#
// C# code for the above approach using System; class GFG{ // Recursive function to print // the juggler sequence public static void jum_sequence( int N) { Console.Write(N + " " ); if (N <= 1) return ; else if (N % 2 == 0) { N = ( int )(Math.Floor(Math.Sqrt(N))); jum_sequence(N); } else { N = ( int )Math.Floor(N * Math.Sqrt(N)); jum_sequence(N); } } // Driver code public static void Main() { // Juggler sequence starting with 10 jum_sequence(10); } } // This code is contributed by Saurabh Jaiswal |
Javascript
<script> // Javascript code for the above approach // Recursive function to print // the juggler sequence function jum_sequence(N){ document.write(N + " " ); if (N <= 1) return ; else if (N % 2 == 0) { N = Math.floor(Math.sqrt(N)); jum_sequence(N); } else { N = Math.floor(N * Math.sqrt(N)); jum_sequence(N); } } // Driver code // Juggler sequence starting with 10 jum_sequence(10); // This code is contributed by gfgking </script> |
10 3 5 11 36 6 2 1
Time Complexity: O(N)
Auxiliary Space: O(1)
Please Login to comment...