Job Sequencing Problem
Given an array of jobs where every job has a deadline and associated profit if the job is finished before the deadline. It is also given that every job takes a single unit of time, so the minimum possible deadline for any job is 1. Maximize the total profit if only one job can be scheduled at a time.
Examples:
Input: Four Jobs with following deadlines and profits
JobID Deadline Profit
a 4 20
b 1 10
c 1 40
d 1 30Output: Following is maximum profit sequence of jobs: c, a
Input: Five Jobs with following deadlines and profits
JobID Deadline Profit
a 2 100
b 1 19
c 2 27
d 1 25
e 3 15Output: Following is maximum profit sequence of jobs: c, a, e
Naive Approach: To solve the problem follow the below idea:
Generate all subsets of a given set of jobs and check individual subsets for the feasibility of jobs in that subset. Keep track of maximum profit among all feasible subsets.
Greedy approach for job sequencing problem:
Greedily choose the jobs with maximum profit first, by sorting the jobs in decreasing order of their profit. This would help to maximize the total profit as choosing the job with maximum profit for every time slot will eventually maximize the total profit
Follow the given steps to solve the problem:
- Sort all jobs in decreasing order of profit.
- Iterate on jobs in decreasing order of profit.For each job , do the following :
- Find a time slot i, such that slot is empty and i < deadline and i is greatest.Put the job in
this slot and mark this slot filled. - If no such i exists, then ignore the job.
- Find a time slot i, such that slot is empty and i < deadline and i is greatest.Put the job in
Below is the implementation of the above approach:
C
// C program for the above approach #include <stdbool.h> #include <stdio.h> #include <stdlib.h> // A structure to represent a job typedef struct Job { char id; // Job Id int dead; // Deadline of job int profit; // Profit if job is over before or on // deadline } Job; // This function is used for sorting all jobs according to // profit int compare( const void * a, const void * b) { Job* temp1 = (Job*)a; Job* temp2 = (Job*)b; return (temp2->profit - temp1->profit); } // Find minimum between two numbers. int min( int num1, int num2) { return (num1 > num2) ? num2 : num1; } // Returns maximum profit from jobs void printJobScheduling(Job arr[], int n) { // Sort all jobs according to decreasing order of profit qsort (arr, n, sizeof (Job), compare); int result[n]; // To store result (Sequence of jobs) bool slot[n]; // To keep track of free time slots // Initialize all slots to be free for ( int i = 0; i < n; i++) slot[i] = false ; // Iterate through all given jobs for ( int i = 0; i < n; i++) { // Find a free slot for this job (Note that we start // from the last possible slot) for ( int j = min(n, arr[i].dead) - 1; j >= 0; j--) { // Free slot found if (slot[j] == false ) { result[j] = i; // Add this job to result slot[j] = true ; // Make this slot occupied break ; } } } // Print the result for ( int i = 0; i < n; i++) if (slot[i]) printf ( "%c " , arr[result[i]].id); } // Driver's code int main() { Job arr[] = { { 'a' , 2, 100 }, { 'b' , 1, 19 }, { 'c' , 2, 27 }, { 'd' , 1, 25 }, { 'e' , 3, 15 } }; int n = sizeof (arr) / sizeof (arr[0]); printf ( "Following is maximum profit sequence of jobs \n" ); // Function call printJobScheduling(arr, n); return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
C++
// C++ code for the above approach #include <algorithm> #include <iostream> using namespace std; // A structure to represent a job struct Job { char id; // Job Id int dead; // Deadline of job int profit; // Profit if job is over before or on // deadline }; // Comparator function for sorting jobs bool comparison(Job a, Job b) { return (a.profit > b.profit); } // Returns maximum profit from jobs void printJobScheduling(Job arr[], int n) { // Sort all jobs according to decreasing order of profit sort(arr, arr + n, comparison); int result[n]; // To store result (Sequence of jobs) bool slot[n]; // To keep track of free time slots // Initialize all slots to be free for ( int i = 0; i < n; i++) slot[i] = false ; // Iterate through all given jobs for ( int i = 0; i < n; i++) { // Find a free slot for this job (Note that we start // from the last possible slot) for ( int j = min(n, arr[i].dead) - 1; j >= 0; j--) { // Free slot found if (slot[j] == false ) { result[j] = i; // Add this job to result slot[j] = true ; // Make this slot occupied break ; } } } // Print the result for ( int i = 0; i < n; i++) if (slot[i]) cout << arr[result[i]].id << " " ; } // Driver's code int main() { Job arr[] = { { 'a' , 2, 100 }, { 'b' , 1, 19 }, { 'c' , 2, 27 }, { 'd' , 1, 25 }, { 'e' , 3, 15 } }; int n = sizeof (arr) / sizeof (arr[0]); cout << "Following is maximum profit sequence of jobs " "\n" ; // Function call printJobScheduling(arr, n); return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
Java
// Java code for the above approach import java.util.*; class Job { // Each job has a unique-id,profit and deadline char id; int deadline, profit; // Constructors public Job() {} public Job( char id, int deadline, int profit) { this .id = id; this .deadline = deadline; this .profit = profit; } // Function to schedule the jobs take 2 arguments // arraylist and no of jobs to schedule void printJobScheduling(ArrayList<Job> arr, int t) { // Length of array int n = arr.size(); // Sort all jobs according to decreasing order of // profit Collections.sort(arr, (a, b) -> b.profit - a.profit); // To keep track of free time slots boolean result[] = new boolean [t]; // To store result (Sequence of jobs) char job[] = new char [t]; // Iterate through all given jobs for ( int i = 0 ; i < n; i++) { // Find a free slot for this job (Note that we // start from the last possible slot) for ( int j = Math.min(t - 1 , arr.get(i).deadline - 1 ); j >= 0 ; j--) { // Free slot found if (result[j] == false ) { result[j] = true ; job[j] = arr.get(i).id; break ; } } } // Print the sequence for ( char jb : job) System.out.print(jb + " " ); System.out.println(); } // Driver's code public static void main(String args[]) { ArrayList<Job> arr = new ArrayList<Job>(); arr.add( new Job( 'a' , 2 , 100 )); arr.add( new Job( 'b' , 1 , 19 )); arr.add( new Job( 'c' , 2 , 27 )); arr.add( new Job( 'd' , 1 , 25 )); arr.add( new Job( 'e' , 3 , 15 )); System.out.println( "Following is maximum profit sequence of jobs" ); Job job = new Job(); // Function call job.printJobScheduling(arr, 3 ); } } // This code is contributed by Aditya Kumar (adityakumar129) |
Python3
# Python3 code for the above approach # function to schedule the jobs take 2 # arguments array and no of jobs to schedule def printJobScheduling(arr, t): # length of array n = len (arr) # Sort all jobs according to # decreasing order of profit for i in range (n): for j in range (n - 1 - i): if arr[j][ 2 ] < arr[j + 1 ][ 2 ]: arr[j], arr[j + 1 ] = arr[j + 1 ], arr[j] # To keep track of free time slots result = [ False ] * t # To store result (Sequence of jobs) job = [ '-1' ] * t # Iterate through all given jobs for i in range ( len (arr)): # Find a free slot for this job # (Note that we start from the # last possible slot) for j in range ( min (t - 1 , arr[i][ 1 ] - 1 ), - 1 , - 1 ): # Free slot found if result[j] is False : result[j] = True job[j] = arr[i][ 0 ] break # print the sequence print (job) # Driver's Code if __name__ = = '__main__' : arr = [[ 'a' , 2 , 100 ], # Job Array [ 'b' , 1 , 19 ], [ 'c' , 2 , 27 ], [ 'd' , 1 , 25 ], [ 'e' , 3 , 15 ]] print ( "Following is maximum profit sequence of jobs" ) # Function Call printJobScheduling(arr, 3 ) # This code is contributed # by Anubhav Raj Singh |
C#
// C# Program for the above approach using System; using System.Collections.Generic; class GFG : IComparer<Job> { public int Compare(Job x, Job y) { if (x.profit == 0 || y.profit == 0) { return 0; } // CompareTo() method return (y.profit).CompareTo(x.profit); } } public class Job { // Each job has a unique-id, // profit and deadline char id; public int deadline, profit; // Constructors public Job() {} public Job( char id, int deadline, int profit) { this .id = id; this .deadline = deadline; this .profit = profit; } // Function to schedule the jobs take 2 // arguments arraylist and no of jobs to schedule void printJobScheduling(List<Job> arr, int t) { // Length of array int n = arr.Count; GFG gg = new GFG(); // Sort all jobs according to // decreasing order of profit arr.Sort(gg); // To keep track of free time slots bool [] result = new bool [t]; // To store result (Sequence of jobs) char [] job = new char [t]; // Iterate through all given jobs for ( int i = 0; i < n; i++) { // Find a free slot for this job // (Note that we start from the // last possible slot) for ( int j = Math.Min(t - 1, arr[i].deadline - 1); j >= 0; j--) { // Free slot found if (result[j] == false ) { result[j] = true ; job[j] = arr[i].id; break ; } } } // Print the sequence foreach ( char jb in job) { Console.Write(jb + " " ); } Console.WriteLine(); } // Driver's code static public void Main() { List<Job> arr = new List<Job>(); arr.Add( new Job( 'a' , 2, 100)); arr.Add( new Job( 'b' , 1, 19)); arr.Add( new Job( 'c' , 2, 27)); arr.Add( new Job( 'd' , 1, 25)); arr.Add( new Job( 'e' , 3, 15)); Console.WriteLine( "Following is maximum " + "profit sequence of jobs" ); Job job = new Job(); // Function call job.printJobScheduling(arr, 3); } } // This code is contributed by avanitracchadiya2155. |
Javascript
// Program to find the maximum profit // job sequence from a given array // of jobs with deadlines and profits // function to schedule the jobs take 2 // arguments array and no of jobs to schedule function printJobScheduling(arr, t){ // length of array let n = arr.length; // Sort all jobs according to // decreasing order of profit for (let i=0;i<n;i++){ for (let j = 0;j<(n - 1 - i);j++){ if (arr[j][2] < arr[j + 1][2]){ let temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp; } } } // To keep track of free time slots let result = []; // To store result (Sequence of jobs) let job = []; for (let i = 0;i<t;i++){ job[i] = '-1' ; result[i] = false ; } // Iterate through all given jobs for (let i= 0;i<arr.length;i++){ // Find a free slot for this job // (Note that we start from the // last possible slot) for (let j = (t - 1, arr[i][1] - 1);j>=0;j--){ // Free slot found if (result[j] == false ){ result[j] = true ; job[j] = arr[i][0]; break ; } } } // print the sequence document.write(job); } // Driver COde arr = [[ 'a' , 2, 100], // Job Array [ 'b' , 1, 19], [ 'c' , 2, 27], [ 'd' , 1, 25], [ 'e' , 3, 15]]; document.write( "Following is maximum profit sequence of jobs " ); document.write( "<br>" ); // Function Call printJobScheduling(arr, 3) ; |
Following is maximum profit sequence of jobs c a e
Time Complexity: O(N2)
Auxiliary Space: O(N)
Job sequencing problem using Priority-Queue (Max-Heap):
Sort the jobs in the increasing order of their deadlines and then calculate the available slots between every two consecutive deadlines while iterating from the end. Include the profit of the job at the root of the Max-Heap while the empty slots are available and Heap is not empty, as this would help to choose the jobs with maximum profit for every set of available slots.
Follow the given steps to solve the problem:
- Sort the jobs based on their deadlines.
- Iterate from the end and calculate the available slots between every two consecutive deadlines. Insert the profit, deadline, and job ID of ith job in the max heap.
- While the slots are available and there are jobs left in the max heap, include the job ID with maximum profit and deadline in the result.
- Sort the result array based on their deadlines.
Below is the implementation of the above approach:
C++
// C++ code for the above approach #include <bits/stdc++.h> using namespace std; // A structure to represent a job struct Job { char id; // Job Id int dead; // Deadline of job int profit; // Profit earned if job is completed before // deadline }; // Custom sorting helper struct which is used for sorting // all jobs according to profit struct jobProfit { bool operator()(Job const & a, Job const & b) { return (a.profit < b.profit); } }; // Returns maximum profit from jobs void printJobScheduling(Job arr[], int n) { vector<Job> result; sort(arr, arr + n, [](Job a, Job b) { return a.dead < b.dead; }); // set a custom priority queue priority_queue<Job, vector<Job>, jobProfit> pq; for ( int i = n - 1; i >= 0; i--) { int slot_available; // we count the slots available between two jobs if (i == 0) { slot_available = arr[i].dead; } else { slot_available = arr[i].dead - arr[i - 1].dead; } // include the profit of job(as priority), // deadline and job_id in maxHeap pq.push(arr[i]); while (slot_available > 0 && pq.size() > 0) { // get the job with the most profit Job job = pq.top(); pq.pop(); // reduce the slots slot_available--; // add it to the answer result.push_back(job); } } // sort the result based on the deadline sort(result.begin(), result.end(), [&](Job a, Job b) { return a.dead < b.dead; }); // print the result for ( int i = 0; i < result.size(); i++) cout << result[i].id << ' ' ; cout << endl; } // Driver's code int main() { Job arr[] = { { 'a' , 2, 100 }, { 'b' , 1, 19 }, { 'c' , 2, 27 }, { 'd' , 1, 25 }, { 'e' , 3, 15 } }; int n = sizeof (arr) / sizeof (arr[0]); cout << "Following is maximum profit sequence of jobs " "\n" ; // Function call printJobScheduling(arr, n); return 0; } // This code is contributed By Reetu Raj Dubey |
Java
// Java implementation of above approach // Program to find the maximum profit // job sequence from a given array // of jobs with deadlines and profits import java.util.*; public class GFG { // a class to represent job static class Job { char job_id; int deadline; int profit; Job( char job_id, int deadline, int profit) { this .deadline = deadline; this .job_id = job_id; this .profit = profit; } } static void printJobScheduling(ArrayList<Job> arr) { int n = arr.size(); // sorting the array on the // basis of their deadlines Collections.sort(arr, (a, b) -> { return a.deadline - b.deadline; }); // initialise the result array and maxHeap ArrayList<Job> result = new ArrayList<>(); PriorityQueue<Job> maxHeap = new PriorityQueue<>( (a, b) -> { return b.profit - a.profit; }); // starting the iteration from the end for ( int i = n - 1 ; i > - 1 ; i--) { int slot_available; // calculate slots between two deadlines if (i == 0 ) { slot_available = arr.get(i).deadline; } else { slot_available = arr.get(i).deadline - arr.get(i - 1 ).deadline; } // include the profit of job(as priority), // deadline and job_id in maxHeap maxHeap.add(arr.get(i)); while (slot_available > 0 && maxHeap.size() > 0 ) { // get the job with max_profit Job job = maxHeap.remove(); // reduce the slots slot_available--; // include the job in the result array result.add(job); } } // jobs included might be shuffled // sort the result array by their deadlines Collections.sort(result, (a, b) -> { return a.deadline - b.deadline; }); for (Job job : result) { System.out.print(job.job_id + " " ); } System.out.println(); } // Driver's Code public static void main(String[] args) { ArrayList<Job> arr = new ArrayList<Job>(); arr.add( new Job( 'a' , 2 , 100 )); arr.add( new Job( 'b' , 1 , 19 )); arr.add( new Job( 'c' , 2 , 27 )); arr.add( new Job( 'd' , 1 , 25 )); arr.add( new Job( 'e' , 3 , 15 )); System.out.println( "Following is maximum " + "profit sequence of jobs" ); // Function call printJobScheduling(arr); } } // This code is contributed by Karandeep Singh |
Python3
# Python3 program for the above approach import heapq def printJobScheduling(arr): n = len (arr) # arr[i][0] = job_id, arr[i][1] = deadline, arr[i][2] = profit # sorting the array on the # basis of their deadlines arr.sort(key = lambda x: x[ 1 ]) # initialise the result array and maxHeap result = [] maxHeap = [] # starting the iteration from the end for i in range (n - 1 , - 1 , - 1 ): # calculate slots between two deadlines if i = = 0 : slots_available = arr[i][ 1 ] else : slots_available = arr[i][ 1 ] - arr[i - 1 ][ 1 ] # include the profit of job(as priority), deadline # and job_id in maxHeap # note we push negative value in maxHeap to convert # min heap to max heap in python heapq.heappush(maxHeap, ( - arr[i][ 2 ], arr[i][ 1 ], arr[i][ 0 ])) while slots_available and maxHeap: # get the job with max_profit profit, deadline, job_id = heapq.heappop(maxHeap) # reduce the slots slots_available - = 1 # include the job in the result array result.append([job_id, deadline]) # jobs included might be shuffled # sort the result array by their deadlines result.sort(key = lambda x: x[ 1 ]) for job in result: print (job[ 0 ], end = " " ) print () # Driver's Code if __name__ = = '__main__' : arr = [[ 'a' , 2 , 100 ], # Job Array [ 'b' , 1 , 19 ], [ 'c' , 2 , 27 ], [ 'd' , 1 , 25 ], [ 'e' , 3 , 15 ]] print ( "Following is maximum profit sequence of jobs" ) # Function Call printJobScheduling(arr) # This code is contributed # by Shivam Bhagat |
C#
// C# implementation of the above approach using System; using System.Collections.Generic; namespace GFG { // A class to represent a job public class Job { public char JobId { get ; set ; } public int Deadline { get ; set ; } public int Profit { get ; set ; } public Job( char jobId, int deadline, int profit) { this .Deadline = deadline; this .JobId = jobId; this .Profit = profit; } } class Scheduling { static void PrintJobScheduling(List<Job> arr) { int n = arr.Count; // Sorting the array based on their deadlines arr.Sort((a, b) => b.Deadline.CompareTo(a.Deadline)); // Initializing the result array List<Job> result = new List<Job>(); // Starting the iteration from the end for ( int i = n - 1; i >= 0; i--) { int slot_available; // Calculating the slots between two deadlines if (i == 0) { slot_available = arr[i].Deadline; } else { slot_available = arr[i].Deadline - arr[i - 1].Deadline; } // Including the job with max profit Job job = null ; int maxProfit = -1; for ( int j = i; j >= 0; j--) { if (arr[j].Deadline >= slot_available && arr[j].Profit > maxProfit) { job = arr[j]; maxProfit = arr[j].Profit; } } if (job != null ) { slot_available--; result.Add(job); arr.Remove(job); i--; } } // Jobs included might be shuffled // Sorting the result array based on their deadlines result.Sort((a, b) => a.Deadline.CompareTo(b.Deadline)); foreach (Job job in result) { Console.Write(job.JobId + " " ); } Console.WriteLine(); } // Driver Code static void Main( string [] args) { List<Job> arr = new List<Job> { new Job( 'a' , 2, 100), new Job( 'b' , 1, 19), new Job( 'c' , 2, 27), new Job( 'd' , 1, 25), new Job( 'e' , 3, 15) }; Console.WriteLine( "Following is maximum profit sequence of jobs" ); // Function call PrintJobScheduling(arr); } } } // This code is contributed by phasing17. |
Javascript
// JS implementation of the above approach // A class to represent a job class Job { constructor(jobId, deadline, profit) { this .JobId = jobId; this .Deadline = deadline; this .Profit = profit; } } function PrintJobScheduling(arr) { let n = arr.length; // Sorting the array based on their deadlines arr.sort((a, b) => b.Deadline - a.Deadline); // Initializing the result array let result = []; // Starting the iteration from the end let i; for (i = n - 1; i >= 0; i--) { let slot_available; // Calculating the slots between two deadlines if (i == 0) { slot_available = arr[i].Deadline; } else { slot_available = arr[i].Deadline - arr[i - 1].Deadline; } // Including the job with max profit let job ; let maxProfit = -1; for (let j = i; j >= 0; j--) { if (arr[j].Deadline >= slot_available && arr[j].Profit > maxProfit) { job = arr[j]; maxProfit = arr[j].Profit; } } if (job != null ) { slot_available--; result.push(job); arr.splice(arr.indexOf(job), 1); i--; // Remove the job from the input list } } // Jobs included might be shuffled // Sorting the result array based on their deadlines result.sort((a, b) => a.Deadline - b.Deadline); const output = result.map(job => job.JobId).join( " " ); console.log(output); } // Driver Code let arr = [ new Job( 'a' , 2, 100), new Job( 'b' , 1, 19), new Job( 'c' , 2, 27), new Job( 'd' , 1, 25), new Job( 'e' , 3, 15) ]; console.log( "Following is maximum profit sequence of jobs" ); // Function call PrintJobScheduling(arr); // This code is contributed by phasing17. |
Following is maximum profit sequence of jobs a c e
Time Complexity: O(N log N)
Auxiliary Space: O(N)
It can also be optimized using Disjoint Set Data Structure. Please refer to the below post for details.
Job Sequencing Problem | Set 2 (Using Disjoint Set)
This article is contributed by Shubham. Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above.
Please Login to comment...