Javascript Program To Check For Balanced Brackets In An Expression (Well-Formedness) Using Stack
Given an expression string exp, write a program to examine whether the pairs and the orders of “{“, “}”, “(“, “)”, “[“, “]” are correct in exp.
Example:
Input: exp = “[()]{}{[()()]()}”
Output: BalancedInput: exp = “[(])”
Output: Not Balanced
Algorithm:
- Declare a character stack S.
- Now traverse the expression string exp.
- If the current character is a starting bracket (‘(‘ or ‘{‘ or ‘[‘) then push it to stack.
- If the current character is a closing bracket (‘)’ or ‘}’ or ‘]’) then pop from stack and if the popped character is the matching starting bracket then fine else brackets are not balanced.
- After complete traversal, if there is some starting bracket left in stack then “not balanced”
Below image is a dry run of the above approach:
Below is the implementation of the above approach:
Javascript
<script> // Javascript program for checking // balanced brackets // Function to check if brackets are balanced function areBracketsBalanced(expr) { // Using ArrayDeque is faster // than using Stack class let stack = []; // Traversing the Expression for (let i = 0; i < expr.length; i++) { let x = expr[i]; if (x == '(' || x == '[' || x == '{' ) { // Push the element in the stack stack.push(x); continue ; } // If current character is not opening // bracket, then it must be closing. // So stack cannot be empty at this point. if (stack.length == 0) return false ; let check; switch (x){ case ')' : check = stack.pop(); if (check == '{' || check == '[' ) return false ; break ; case '}' : check = stack.pop(); if (check == '(' || check == '[' ) return false ; break ; case ']' : check = stack.pop(); if (check == '(' || check == '{' ) return false ; break ; } } // Check Empty Stack return (stack.length == 0); } // Driver code let expr = "([{}])" ; // Function call if (areBracketsBalanced(expr)) document.write( "Balanced " ); else document.write( "Not Balanced " ); // This code is contributed by rag2127 </script> |
Output
Balanced
Time Complexity: O(n)
Auxiliary Space: O(n) for stack.
Please refer complete article on Check for Balanced Brackets in an expression (well-formedness) using Stack for more details!
Please Login to comment...