Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Javascript Program for Products of ranges in an array

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an array A[] of size N. Solve Q queries. Find the product in the range [L, R] under modulo P ( P is Prime). 

Examples:  

Input : A[] = {1, 2, 3, 4, 5, 6} 
          L = 2, R = 5, P = 229
Output : 120

Input : A[] = {1, 2, 3, 4, 5, 6},
         L = 2, R = 5, P = 113
Output : 7 

Brute Force
For each of the queries, traverse each element in the range [L, R] and calculate the product under modulo P. This will answer each query in O(N).  

Javascript




<script>
     
    // Product in range Queries in O(N)
     
    // Function to calculate
    // Product in the given range.
    function calculateProduct(A, L, R, P)
    {
           
        // As our array is 0 based
        // as and L and R are given
        // as 1 based index.
        L = L - 1;
        R = R - 1;
       
        let ans = 1;
        for (let i = L; i <= R; i++)
        {
            ans = ans * A[i];
            ans = ans % P;
        }
       
        return ans;
    }
     
    let A = [ 1, 2, 3, 4, 5, 6 ];
    let P = 229;
    let L = 2, R = 5;
    document.write(calculateProduct(A, L, R, P) + "</br>");
 
    L = 1;
    R = 3;
    document.write(calculateProduct(A, L, R, P) + "</br>");
         
</script>


Output :  

120
6

 

Efficient Using Modular Multiplicative Inverse:
As P is prime, we can use Modular Multiplicative Inverse. Using dynamic programming, we can calculate a pre-product array under modulo P such that the value at index i contains the product in the range [0, i]. Similarly, we can calculate the pre-inverse product under modulo P. Now each query can be answered in O(1). 
The inverse product array contains the inverse product in the range [0, i] at index i. So, for the query [L, R], the answer will be Product[R]*InverseProduct[L-1]
Note: We can not calculate the answer as Product[R]/Product[L-1] because the product is calculated under modulo P. If we do not calculate the product under modulo P there is always a possibility of overflow.  

Javascript




<script>
    // Javascript program to find Product
    // in range Queries in O(1)
     
    let MAX = 100;
    let pre_product = new Array(MAX);
    let inverse_product = new Array(MAX);
      
    // Returns modulo inverse of
    // a with respect to m using
    // extended Euclid Algorithm
    // Assumption: a and m are
    // coprimes, i.e., gcd(a, m) = 1
    function modInverse(a, m)
    {
        let m0 = m, t, q;
        let x0 = 0, x1 = 1;
      
        if (m == 1)
            return 0;
      
        while (a > 1)
        {
      
            // q is quotient
            q = parseInt(a / m, 10);
            t = m;
      
            // m is remainder now, process
            // same as Euclid's algo
            m = a % m;
            a = t;
            t = x0;
            x0 = x1 - q * x0;
            x1 = t;
        }
      
        // Make x1 positive
        if (x1 < 0)
            x1 += m0;
      
        return x1;
    }
      
    // calculating pre_product array
    function calculate_Pre_Product(A, N, P)
    {
        pre_product[0] = A[0];
      
        for (let i = 1; i < N; i++)
        {
            pre_product[i] =
                pre_product[i - 1] *
                               A[i];
                                  
            pre_product[i] =
                pre_product[i] % P;
        }
    }
      
    // Calculating inverse_product
    // array.
    function calculate_inverse_product(A, N, P)
    {
        inverse_product[0] =
                modInverse(pre_product[0], P);
      
        for (let i = 1; i < N; i++)
            inverse_product[i] =
                modInverse(pre_product[i], P);
    }
      
    // Function to calculate Product
    // in the given range.
    function calculateProduct(A, L, R, P)
    {
          
        // As our array is 0 based as
        // and L and R are given as 1
        // based index.
        L = L - 1;
        R = R - 1;
        let ans;
      
        if (L == 0)
            ans = pre_product[R];
        else
            ans = pre_product[R] *
                  inverse_product[L - 1];
      
        return ans;
    }
          
    // Array
    let A = [ 1, 2, 3, 4, 5, 6 ];
 
    // Prime P
    let P = 113;
 
    // Calculating PreProduct and
    // InverseProduct
    calculate_Pre_Product(A, A.length, P);
 
    calculate_inverse_product(A, A.length, P);
 
    // Range [L, R] in 1 base index
    let L = 2, R = 5;
    document.write(calculateProduct(A, L, R, P) + "</br>");
 
    L = 1;
    R = 3;
    document.write(calculateProduct(A, L, R, P));
       
</script>


Output :  

7
6

Please refer complete article on Products of ranges in an array for more details!


My Personal Notes arrow_drop_up
Last Updated : 05 Jul, 2022
Like Article
Save Article
Similar Reads
Related Tutorials