Java Program to Implement the Schonhage-Strassen Algorithm for Multiplication of Two Numbers
Schonhage-Strassen algorithm is one of the fastest ways of multiplying very large integer values (30000 to 150000 decimal digits). This algorithm was developed by Arnold Schönhage and Volker Strassen. Though the Furer’s algorithm is faster than that of Schonhage-Strassen’s algorithm, there are no practical applications for it, except Galactic algorithms (probably not used for any data present on the earth). So, Schonhage-Strassen’s algorithm is considered the best for multiplying large integer values.
In this approach of multiplication, the two integers are first multiplied without performing carry. The result set then obtained is called Acyclic Convolution or Linear Convolution. Then we perform carry on the individual columns of the Linear Convolution.
Examples:
Java
// Java program to implement Schonhage-Strassen's // Multiplication Algorithm import java.io.*; class GFG { // two class level variables to // store the given values static long a, b; // class level array to store the LinearConvolution static int [] linearConvolution; // an integer variable to determine // the length of the LinearConvolution static int length; // to count the no.of digits in each of // the given values a and b static int countDigits( long num) { // an integer variable initialized to // 0 to store the no.of digits int count = 0 ; // as long as the number is // greater than 0, divide it by 10 // and increment the count while (num > 0 ) { num /= 10 ; count++; } // return the count when number becomes 0 return count; } // to perform schonhage-Strassen's Multiplication static void schonhageStrassenMultiplication() { // first find the LinearConvolution findLinearConvolution(); // Then perform carry on it performCarry(); } // to find LinearConvolution static void findLinearConvolution() { // no.of digits in first number (a) int aDigits = countDigits(a); // no.of digits in second number (b) int bDigits = countDigits(b); // a temporary variable to store the value of a long temp = a; // length of the LinearConvolution is // 1 less than the no.of Digits in a + // no.of digits in b length = aDigits + bDigits - 1 ; linearConvolution = new int [length]; for ( int i = 0 ; i < aDigits; i++, b /= 10 ) { a = temp; for ( int j = 0 ; j < bDigits; j++, a /= 10 ) { // multiply the current digit of a with // current digit of b and store in // LinearConvolution linearConvolution[i + j] += (b % 10 ) * (a % 10 ); } } System.out.print( "The Linear Convolution is: [ " ); for ( int i = length - 1 ; i >= 0 ; i--) { // print the LinearConvolution array System.out.print(linearConvolution[i] + " " ); } System.out.println( "]" ); } // to perform carry on the obtained LinearConvolution static void performCarry() { // initialize product to 0 long product = 0 ; int carry = 0 , base = 1 ; // for every value in the LinearConvolution for ( int i = 0 ; i < length; i++) { linearConvolution[i] += carry; // add the product of base and units digit of // LinearConvolution[i] to the product product = product + (base * (linearConvolution[i] % 10 )); // now LinearConvolution[i]/10 // will become the carry carry = linearConvolution[i] / 10 ; base *= 10 ; } System.out.println( "\nThe Product is : " + product); } // Driver method public static void main(String[] args) { // initialize the two declared class variables with // the desired values a = 2604 ; b = 1812 ; // call schonhageStrassenMultiplication() method schonhageStrassenMultiplication(); } } |
The Linear Convolution is: [ 2 22 50 14 44 4 8 ] The Product is : 4718448
Time Complexity: O(nlogn)
Auxiliary Space: O(n) because it is using extra space for array linearConvolution
Please Login to comment...