Find Mth element after K Right Rotations of an Array
Given non-negative integers K, M, and an array arr[ ] consisting of N elements, the task is to find the Mth element of the array after K right rotations.
Examples:
Input: arr[] = {3, 4, 5, 23}, K = 2, M = 1
Output: 5
Explanation:
The array after first right rotation a1[ ] = {23, 3, 4, 5}
The array after second right rotation a2[ ] = {5, 23, 3, 4}
1st element after 2 right rotations is 5.
Input: arr[] = {1, 2, 3, 4, 5}, K = 3, M = 2
Output: 4
Explanation:
The array after 3 right rotations has 4 at its second position.
Naive Approach:
The simplest approach to solve the problem is to Perform Right Rotation operation K times and then find the Mth element of the final array.
Time Complexity: O(N * K)
Auxiliary Space: O(N)
Efficient Approach:
To optimize the problem, the following observations need to be made:
- If the array is rotated N times it returns the initial array again.
For example, a[ ] = {1, 2, 3, 4, 5}, K=5
Modified array after 5 right rotation a5[ ] = {1, 2, 3, 4, 5}.
- Therefore, the elements in the array after Kth rotation is the same as the element at index K%N in the original array.
- If K >= M, the Mth element of the array after K right rotations is
{ (N-K) + (M-1) } th element in the original array.
- If K < M, the Mth element of the array after K right rotations is:
(M – K – 1) th element in the original array.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to return Mth element of // array after k left rotations int getFirstElement( int a[], int N, int K, int M) { // The array comes to original state // after N rotations K %= N; int index; if (K >= M) // Mth element after k right // rotations is (N-K)+(M-1) th // element of the array index = (N - K) + (M - 1); // Otherwise else // (M - K - 1) th element // of the array index = (M - K - 1); int result = a[index]; // Return the result return result; } // Driver Code int main() { // Array initialization int a[] = { 1, 2, 3, 4, 5 }; int N = sizeof (a) / sizeof (a[0]); int K = 3, M = 2; // Function call cout << getFirstElement(a, N, K, M); return 0; } // This code is contributed by GSSN Himabindu |
Java
// Java program to implement // the above approach import java.io.*; class GFG{ // Function to return Mth element of // array after k right rotations static int getFirstElement( int a[], int N, int K, int M) { // The array comes to original state // after N rotations K %= N; int index; // If K is greater or equal to M if (K >= M) // Mth element after k right // rotations is (N-K)+(M-1) th // element of the array index = (N - K) + (M - 1 ); // Otherwise else // (M - K - 1) th element // of the array index = (M - K - 1 ); int result = a[index]; // Return the result return result; } // Driver Code public static void main(String[] args) { int a[] = { 1 , 2 , 3 , 4 , 5 }; int N = 5 ; int K = 3 , M = 2 ; System.out.println(getFirstElement(a, N, K, M)); } } // This code is contributed by Ritik Bansal |
Python3
# Python program for the above approach # Function to return Mth element of # array after k left rotations def getFirstElement(a, N, K, M): # The array comes to original state # after N rotations K % = N index = 0 if (K > = M): # Mth element after k right # rotations is (N-K)+(M-1) th # element of the array index = (N - K) + (M - 1 ) # Otherwise else : # (M - K - 1) th element # of the array index = (M - K - 1 ) result = a[index] # Return the result return result # Driver Code # Array initialization a = [ 1 , 2 , 3 , 4 , 5 ] N = len (a) K,M = 3 , 2 # Function call print (getFirstElement(a, N, K, M)) # This code is contributed by shinjanpatra |
C#
using System; using System.Linq; class GFG { // Function to return Mth element of // array after k left rotations static int getFirstElement( int []a, int N, int K, int M) { // The array comes to original state // after N rotations K %= N; int index; if (K >= M) // Mth element after k right // rotations is (N-K)+(M-1) th // element of the array index = (N - K) + (M - 1); // Otherwise else // (M - K - 1) th element // of the array index = (M - K - 1); int result = a[index]; // Return the result return result; } /* Driver program to test above functions */ public static void Main() { int []arr = {1, 2, 3, 4, 5}; int N = arr.Length; int K = 3, M = 2; Console.Write(getFirstElement(arr, N, K, M)); } } // This code is contributed by Aarti_Rathi |
Javascript
<script> // JavaScript program for the above approach // Function to return Mth element of // array after k left rotations function getFirstElement(a, N, K, M) { // The array comes to original state // after N rotations K %= N let index if (K >= M) // Mth element after k right // rotations is (N-K)+(M-1) th // element of the array index = (N - K) + (M - 1) // Otherwise else // (M - K - 1) th element // of the array index = (M - K - 1) let result = a[index] // Return the result return result } // Driver Code // Array initialization let a = [ 1, 2, 3, 4, 5 ] let N = a.length let K = 3, M = 2 // Function call document.write(getFirstElement(a, N, K, M)) // This code is contributed by shinjanpatra </script> |
4
Time complexity: O(1)
Auxiliary Space: O(1)
Please refer complete article on Mth element after K Right Rotations of an Array for more details!
Please Login to comment...