Iterative Method to find Height of Binary Tree
There are two conventions to define the height of a Binary Tree
- Number of nodes on the longest path from the root to the deepest node.
- Number of edges on the longest path from the root to the deepest node.
In this post, the first convention is followed. For example, the height of the below tree is 3.
The recursive method to find the height of the Binary Tree is discussed here. How to find height without recursion? We can use level order traversal to find height without recursion. The idea is to traverse level by level. Whenever move down to a level, increment height by 1 (height is initialized as 0). Count number of nodes at each level, stop traversing when the count of nodes at the next level is 0.
Following is a detailed algorithm to find level order traversal using a queue.
Create a queue. Push root into the queue. height = 0 nodeCount = 0 // Number of nodes in the current level. // If the number of nodes in the queue is 0, it implies // that all the levels of the tree have been parsed. So, // return the height. Otherwise count the number of nodes // in the current level and push the children of all the // nodes in the current level to the queue. Loop nodeCount = size of queue // If the number of nodes at this level is 0, return height if nodeCount is 0 return Height; else increase Height // Remove nodes of this level and add nodes of // next level while (nodeCount > 0) push its children to queue pop node from front decrease nodeCount // At this point, queue has nodes of next level
Following is the implementation of the above algorithm.
C++
#include <iostream> #include <queue> using namespace std; // This approach counts the number of nodes from root to the // leaf to calculate the height of the tree. // Defining the structure of a Node. class Node { public : int data; Node* left; Node* right; }; // Helper function to create a newnode. // Input: Data for the newnode. // Return: Address of the newly created node. Node* createNode( int data) { Node* newnode = new Node(); newnode->data = data; newnode->left = NULL; newnode->right = NULL; return newnode; } // Function to calculate the height of given Binary Tree. // Input: Address of the root node of Binary Tree. // Return: Height of Binary Tree as a integer. This includes // the number of nodes from root to the leaf. int calculateHeight(Node* root) { queue<Node*> nodesInLevel; int height = 0; int nodeCount = 0; // Calculate number of nodes in a level. Node* currentNode; // Pointer to store the address of a // node in the current level. if (root == NULL) { return 0; } nodesInLevel.push(root); while (!nodesInLevel.empty()) { // This while loop runs for every level and // increases the height by 1 in each iteration. If // the queue is empty then it implies that the last // level of tree has been parsed. height++; // Create another while loop which will insert all // the child nodes of the current level in the // queue. nodeCount = nodesInLevel.size(); while (nodeCount--) { currentNode = nodesInLevel.front(); // Check if the current nodes has left child and // insert it in the queue. if (currentNode->left != NULL) { nodesInLevel.push(currentNode->left); } // Check if the current nodes has right child // and insert it in the queue. if (currentNode->right != NULL) { nodesInLevel.push(currentNode->right); } // Once the children of the current node are // inserted. Delete the current node. nodesInLevel.pop(); } } return height; } // Driver Function. int main() { // Creating a binary tree. Node* root = NULL; root = createNode(1); root->left = createNode(2); root->left->left = createNode(4); root->left->right = createNode(5); root->right = createNode(3); cout << "The height of the binary tree using iterative " "method is: " << calculateHeight(root) << "." ; return 0; } |
Java
// An iterative java program to find height of binary tree import java.util.LinkedList; import java.util.Queue; // A binary tree node class Node { int data; Node left, right; Node( int item) { data = item; left = right; } } class BinaryTree { Node root; // Iterative method to find height of Binary Tree int treeHeight(Node node) { // Base Case if (node == null ) return 0 ; // Create an empty queue for level order traversal Queue<Node> q = new LinkedList(); // Enqueue Root and initialize height q.add(node); int height = 0 ; while ( 1 == 1 ) { // nodeCount (queue size) indicates number of nodes // at current level. int nodeCount = q.size(); if (nodeCount == 0 ) return height; height++; // Dequeue all nodes of current level and Enqueue all // nodes of next level while (nodeCount > 0 ) { Node newnode = q.peek(); q.remove(); if (newnode.left != null ) q.add(newnode.left); if (newnode.right != null ) q.add(newnode.right); nodeCount--; } } } // Driver program to test above functions public static void main(String args[]) { BinaryTree tree = new BinaryTree(); // Let us create a binary tree shown in above diagram tree.root = new Node( 1 ); tree.root.left = new Node( 2 ); tree.root.right = new Node( 3 ); tree.root.left.left = new Node( 4 ); tree.root.left.right = new Node( 5 ); System.out.println( "Height of tree is " + tree.treeHeight(tree.root)); } } // This code has been contributed by Mayank Jaiswal |
Python3
# Program to find height of tree by Iteration Method # A binary tree node class Node: # Constructor to create new node def __init__( self , data): self .data = data self .left = None self .right = None # Iterative method to find height of Binary Tree def treeHeight(root): # Base Case if root is None : return 0 # Create a empty queue for level order traversal q = [] # Enqueue Root and Initialize Height q.append(root) height = 0 while ( True ): # nodeCount(queue size) indicates number of nodes # at current level nodeCount = len (q) if nodeCount = = 0 : return height height + = 1 # Dequeue all nodes of current level and Enqueue # all nodes of next level while (nodeCount > 0 ): node = q[ 0 ] q.pop( 0 ) if node.left is not None : q.append(node.left) if node.right is not None : q.append(node.right) nodeCount - = 1 # Driver program to test above function # Let us create binary tree shown in above diagram root = Node( 1 ) root.left = Node( 2 ) root.right = Node( 3 ) root.left.left = Node( 4 ) root.left.right = Node( 5 ) print ( "Height of tree is" , treeHeight(root)) # This code is contributed by Nikhil Kumar Singh(nickzuck_007) |
C#
// An iterative C# program to // find height of binary tree using System; using System.Collections.Generic; // A binary tree node class Node { public int data; public Node left, right; public Node( int item) { data = item; left = right; } } public class BinaryTree { Node root; // Iterative method to find // height of Binary Tree int treeHeight(Node node) { // Base Case if (node == null ) return 0; // Create an empty queue // for level order traversal Queue<Node> q = new Queue<Node>(); // Enqueue Root and initialize height q.Enqueue(node); int height = 0; while (1 == 1) { // nodeCount (queue size) indicates // number of nodes at current level. int nodeCount = q.Count; if (nodeCount == 0) return height; height++; // Dequeue all nodes of current // level and Enqueue all // nodes of next level while (nodeCount > 0) { Node newnode = q.Peek(); q.Dequeue(); if (newnode.left != null ) q.Enqueue(newnode.left); if (newnode.right != null ) q.Enqueue(newnode.right); nodeCount--; } } } // Driver code public static void Main(String []args) { BinaryTree tree = new BinaryTree(); // Let us create a binary // tree shown in above diagram tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.left.right = new Node(5); Console.WriteLine( "Height of tree is " + tree.treeHeight(tree.root)); } } // This code has been contributed by 29AjayKumar |
Javascript
<script> // An iterative javascript program to find height of binary tree // A binary tree node class Node { constructor(item) { this .data = item; this .left = this .right= null ; } } let root; // Iterative method to find height of Binary Tree function treeHeight(node) { // Base Case if (node == null ) return 0; // Create an empty queue for level order traversal let q = []; // Enqueue Root and initialize height q.push(node); let height = 0; while (1 == 1) { // nodeCount (queue size) indicates number of nodes // at current level. let nodeCount = q.length; if (nodeCount == 0) return height; height++; // Dequeue all nodes of current level and Enqueue all // nodes of next level while (nodeCount > 0) { let newnode = q.shift(); if (newnode.left != null ) q.push(newnode.left); if (newnode.right != null ) q.push(newnode.right); nodeCount--; } } } // Driver program to test above functions // Let us create a binary tree shown in above diagram root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); document.write( "Height of tree is " + treeHeight(root)); // This code is contributed by rag2127 </script> |
The height of the binary tree using iterative method is: 3.
Time Complexity: O(n) where n is the number of nodes in a given binary tree.
Space Complexity: O(n) where n is the number of nodes in a given binary tree.
Please Login to comment...