Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Iterated Logarithm log*(n)

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Iterated Logarithm or Log*(n) is the number of times the logarithm function must be iteratively applied before the result is less than or equal to 1.

\log ^{*}n:=\begin{cases}0n\leq 1;\\1+\log ^{*}(\log n)n>1\end{cases}
 

Applications: It is used in the analysis of algorithms (Refer Wiki for details)

C++




// Recursive CPP program to find value of
// Iterated Logarithm
#include <bits/stdc++.h>
using namespace std;
 
int _log(double x, double base)
{
    return (int)(log(x) / log(base));
}
 
double recursiveLogStar(double n, double b)
{
    if (n > 1.0)
        return 1.0 + recursiveLogStar(_log(n, b), b);
    else
        return 0;
}
 
// Driver code
int main()
{
    int n = 100, base = 5;
    cout << "Log*(" << n << ") = "
         << recursiveLogStar(n, base) << "\n";
    return 0;
}


Java




// Recursive Java program to
// find value of Iterated Logarithm
import java.io.*;
 
class GFG
{
static int _log(double x,
                double base)
{
    return (int)(Math.log(x) /
                 Math.log(base));
}
 
static double recursiveLogStar(double n,
                               double b)
{
    if (n > 1.0)
        return 1.0 +
               recursiveLogStar(_log(n,
                                 b), b);
    else
        return 0;
}
 
// Driver code
public static void main (String[] args)
{
    int n = 100, base = 5;
    System.out.println("Log*(" + n + ") = " +
                  recursiveLogStar(n, base));
}
}
 
// This code is contributed by jit_t


Python3




# Recursive Python3 program to find value of
# Iterated Logarithm
import math
 
def _log(x, base):
 
    return (int)(math.log(x) / math.log(base))
 
def recursiveLogStar(n, b):
 
    if(n > 1.0):
        return 1.0 + recursiveLogStar(_log(n, b), b)
    else:
        return 0
 
 
# Driver code
if __name__=='__main__':
    n = 100
    base = 5
    print("Log*(", n, ") = ", recursiveLogStar(n, base))
 
# This code is contributed by
# Sanjit_Prasad


C#




// Recursive C# program to
// find value of Iterated Logarithm
 
using System;
 
public class GFG{
static int _log(double x, double baset)
{
    return (int)(Math.Log(x) /
                Math.Log(baset));
}
 
static double recursiveLogStar(double n,
                            double b)
{
    if (n > 1.0)
        return 1.0 +
            recursiveLogStar(_log(n,
                                b), b);
    else
        return 0;
}
 
// Driver code
    static public void Main (){
     
    int n = 100, baset = 5;
    Console.WriteLine("Log*(" + n + ") = " +
                recursiveLogStar(n, baset));
}
}
 
// This code is contributed by ajit.


PHP




<?php
// Recursive PhP program to find
// value of Iterated Logarithm
 
function _log($x, $base)
{
    return (int)(log($x) / log($base));
}
 
function recursiveLogStar($n, $b)
{
    if ($n > 1.0)
        return 1.0 +
               recursiveLogStar(_log($n,
                               $b), $b);
    else
        return 0;
}
 
// Driver code
$n = 100; $base = 5;
echo "Log*(" , $n , ")"," = ",
recursiveLogStar($n, $base), "\n";
 
// This code is contributed by ajit
?>


Javascript




<script>
 
// Javascript program to
// find value of Iterated Logarithm
 
    function _log( x, base)
{
    return (Math.log(x) /
                 Math.log(base));
}
  
function recursiveLogStar(n, b)
{
    if (n > 1.0)
        return 1.0 +
               recursiveLogStar(_log(n,
                                 b), b);
    else
        return 0;
}
     
// Driver code
 
    let n = 100, base = 5;
    document.write("Log*(" + n + ") = " +
                  recursiveLogStar(n, base));
     
    // This code is contributed by sanjoy_62.
</script>


Output : 

Log*(100) = 2

Time Complexity: O(logn)

Auxiliary Space: O(logn) due to recursive stack space
Iterative Implementation : 

C++




// Iterative CPP function to find value of
// Iterated Logarithm
int iterativeLogStar(double n, double b)
{
    int count = 0;
    while (n >= 1) {
        n = _log(n, b);
        count++;
    }
    return count;
}


Java




// Iterative Java function to find value of
// Iterated Logarithm
public static int iterativeLogStar(double n, double b)
{
    int count = 0;
    while (n >= 1) {
        n = _log(n, b);
        count++;
    }
    return count;
}
 
// This code is contributed by pratham76


Python3




# Iterative Python function to find value of
# Iterated Logarithm
 
 
def iterativeLogStar(n, b):
 
    count = 0
    while(n >= 1):
        n = _log(n, b)
        count = count + 1
 
    return count
 
# This code is contributed by
# Sanjit_Prasad


C#




// Iterative C# function to find value of
// Iterated Logarithm
static int iterativeLogStar(double n, double b)
{
    int count = 0;
    while (n >= 1)
    {
        n = _log(n, b);
        count++;
    }
    return count;
}
 
// This code is contributed by rutvik_56


Javascript




<script>
 
// Iterative javascript function to find
// value of Iterated Logarithm
function iterativeLogStar(n, b)
{
    var count = 0;
    while (n >= 1)
    {
        n = _log(n, b);
        count++;
    }
    return count;
}
 
// This code is contributed by 29AjayKumar
 
</script>


Time Complexity: O(logn)

Auxiliary Space: O(1)

This article is contributed by Abhishek rajput. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


My Personal Notes arrow_drop_up
Last Updated : 19 Aug, 2022
Like Article
Save Article
Similar Reads
Related Tutorials