Image Compression using Huffman Coding
Huffman coding is one of the basic compression methods, that have proven useful in image and video compression standards. When applying Huffman encoding technique on an Image, the source symbols can be either pixel intensities of the Image, or the output of an intensity mapping function.
Prerequisites : Huffman Coding | File Handling
The first step of Huffman coding technique is to reduce the input image to a ordered histogram, where the probability of occurrence of a certain pixel intensity value is as
prob_pixel = numpix/totalnum
where numpix is the number of occurrence of a pixel with a certain intensity value and totalnum is the total number of pixels in the input Image.
Let us take a 8 X 8 Image
The pixel intensity values are :
This image contains 46 distinct pixel intensity values, hence we will have 46 unique Huffman code words.
It is evident that, not all pixel intensity values may be present in the image and hence will not have non-zero probability of occurrence.
From here on, the pixel intensity values in the input Image will be addressed as leaf nodes.
Now, there are 2 essential steps to build a Huffman Tree :
- Build a Huffman Tree :
- Combine the two lowest probability leaf nodes into a new node.
- Replace the two leaf nodes by the new node and sort the nodes according to the new probability values.
- Continue the steps (a) and (b) until we get a single node with probability value 1.0. We will call this node as root
- Backtrack from the root, assigning ‘0’ or ‘1’ to each intermediate node, till we reach the leaf nodes
In this example, we will assign ‘0’ to the left child node and ‘1’ to the right one.
Now, let’s look into the implementation :
Step 1 :
Read the Image into a 2D array(image)
If the Image is in .bmp format, then the Image can be read into the 2D array, by using this code given in this link here.
int i, j; char filename[] = "Input_Image.bmp" ; int data = 0, offset, bpp = 0, width, height; long bmpsize = 0, bmpdataoff = 0; int ** image; int temp = 0; // Reading the BMP File FILE * image_file; image_file = fopen (filename, "rb" ); if (image_file == NULL) { printf ( "Error Opening File!!" ); exit (1); } else { // Set file position of the // stream to the beginning // Contains file signature // or ID "BM" offset = 0; // Set offset to 2, which // contains size of BMP File offset = 2; fseek (image_file, offset, SEEK_SET); // Getting size of BMP File fread (&bmpsize, 4, 1, image_file); // Getting offset where the // pixel array starts // Since the information // is at offset 10 from // the start, as given // in BMP Header offset = 10; fseek (image_file, offset, SEEK_SET); // Bitmap data offset fread (&bmpdataoff, 4, 1, image_file); // Getting height and width of the image // Width is stored at offset 18 and height // at offset 22, each of 4 bytes fseek (image_file, 18, SEEK_SET); fread (&width, 4, 1, image_file); fread (&height, 4, 1, image_file); // Number of bits per pixel fseek (image_file, 2, SEEK_CUR); fread (&bpp, 2, 1, image_file); // Setting offset to start of pixel data fseek (image_file, bmpdataoff, SEEK_SET); // Creating Image array image = ( int **) malloc (height * sizeof ( int *)); for (i = 0; i < height; i++) { image[i] = ( int *) malloc (width * sizeof ( int )); } // int image[height][width] // can also be done // Number of bytes in the // Image pixel array int numbytes = (bmpsize - bmpdataoff) / 3; // Reading the BMP File // into Image Array for (i = 0; i < height; i++) { for (j = 0; j < width; j++) { fread (&temp, 3, 1, image_file); // the Image is a // 24-bit BMP Image temp = temp & 0x0000FF; image[i][j] = temp; } } } |
Create a Histogram of the pixel intensity values present in the Image
// Creating the Histogram int hist[256]; for (i = 0; i < 256; i++) hist[i] = 0; for (i = 0; i < height; i++) for (j = 0; j < width; j++) hist[image[i][j]] += 1; |
Find the number of pixel intensity values having non-zero probability of occurrence
Since, the values of pixel intensities range from 0 to 255, and not all pixel intensity values may be present in the image (as evident from the histogram and also the image matrix) and hence will not have non-zero probability of occurrence. Also another purpose this step serves, is that the number of pixel intensity values having non-zero probability values will give us the number of leaf nodes in the Image.
// Finding number of // non-zero occurrences int nodes = 0; for (i = 0; i < 256; i++) { if (hist[i] != 0) nodes += 1; } |
Calculating the maximum length of Huffman code words
As shown by Y.S.Abu-Mostafa and R.J.McEliece in their paper “Maximal codeword lengths in Huffman codes”, that, If , then in any efficient prefix code for a source whose least probability is p, the longest codeword length is at most K & If
, there exists a source whose smallest probability is p, and which has a Huffman code whose longest word has length K. If
, there exists such a source for which every optimal code has a longest word of length K.
Here, is the
Fibonacci number.
Gallager [1] noted that every Huffman tree is efficient, but in fact it is easy to see more generally that every optimal tree is efficient
Fibonacci Series is : 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …
In our example, lowest probability(p) is 0.015625
Hence,
1/p = 64
For K = 9, F(K+2) = F(11) = 55 F(K+3) = F(12) = 89
Therefore,
1/F(K+3) < p < 1/F(K+2) Hence optimal length of code is K=9
// Calculating max length // of Huffman code word i = 0; while ((1 / p) < fib(i)) i++; int maxcodelen = i - 3; |
// Function for getting Fibonacci // numbers defined outside main int fib( int n) { if (n <= 1) return n; return fib(n - 1) + fib(n - 2); } |
Step 2
Define a struct which will contain the pixel intensity values(pix), their corresponding probabilities(freq), the pointer to the left(*left) and right(*right) child nodes and also the string array for the Huffman code word(code).
These structs is defined inside main(), so as to use the maximum length of code(maxcodelen) to declare the code array field of the struct pixfreq
// Defining Structures pixfreq struct pixfreq { int pix; float freq; struct pixfreq *left, *right; char code[maxcodelen]; }; |
Step 3
Define another Struct which will contain the pixel intensity values(pix), their corresponding probabilities(freq) and an additional field, which will be used for storing the position of new generated nodes(arrloc).
// Defining Structures huffcode struct huffcode { int pix, arrloc; float freq; }; |
Step 4
Declaring an array of structs. Each element of the array corresponds to a node in the Huffman Tree.
// Declaring structs struct pixfreq* pix_freq; struct huffcode* huffcodes; |
Why use two struct arrays?
Initially, the struct array pix_freq, as well as the struct array huffcodes will only contain the information of all the leaf nodes in the Huffman Tree.
The struct array pix_freq will be used to store all the nodes of the Huffman Tree and the array huffcodes will be used as the updated (and sorted) tree.
Remember that, only huffcodes will be sorted in each iteration, and not pix_freq
The new nodes created by combining two nodes of lowest frequency, in each iteration, will be appended to the end of the pix_freq array, and also to huffcodes array.
But the array huffcodes will be sorted again according to the probability of occurrence, after the new node is added to it.
The position of the new node in the array pix_freq will be stored in the arrloc field of the struct huffcode.
The arrloc field will be used when assigning the pointer to the left and right child of a new node.
Step 4 continued…
Now, if there are N number of leaf nodes, the total number of nodes in the whole Huffman Tree will be equal to 2N-1
And after two nodes are combined and replaced by the new parent node, the number of nodes decreases by 1 at each iteration. Hence, it is sufficient to have a length of nodes for the array huffcodes, which will be used as the updated and sorted Huffman nodes.
int totalnodes = 2 * nodes - 1; pix_freq = ( struct pixfreq*) malloc ( sizeof ( struct pixfreq) * totalnodes); huffcodes = ( struct huffcode*) malloc ( sizeof ( struct huffcode) * nodes); |
Step 5
Initialize the two arrays pix_freq and huffcodes with information of the leaf nodes.
j = 0; int totpix = height * width; float tempprob; for (i = 0; i < 256; i++) { if (hist[i] != 0) { // pixel intensity value huffcodes[j].pix = i; pix_freq[j].pix = i; // location of the node // in the pix_freq array huffcodes[j].arrloc = j; // probability of occurrence tempprob = ( float )hist[i] / ( float )totpix; pix_freq[j].freq = tempprob; huffcodes[j].freq = tempprob; // Declaring the child of // leaf node as NULL pointer pix_freq[j].left = NULL; pix_freq[j].right = NULL; // initializing the code // word as end of line pix_freq[j].code[0] = '\0' ; j++; } } |
Step 6
Sorting the huffcodes array according to the probability of occurrence of the pixel intensity values
Note that, it is necessary to sort the huffcodes array, but not the pix_freq array, since we are already storing the location of the pixel values in the arrloc field of the huffcodes array.
// Sorting the histogram struct huffcode temphuff; // Sorting w.r.t probability // of occurrence for (i = 0; i < nodes; i++) { for (j = i + 1; j < nodes; j++) { if (huffcodes[i].freq < huffcodes[j].freq) { temphuff = huffcodes[i]; huffcodes[i] = huffcodes[j]; huffcodes[j] = temphuff; } } } |
Step 7
Building the Huffman Tree
We start by combining the two nodes with lowest probabilities of occurrence and then replacing the two nodes by the new node. This process continues until we have a root node. The first parent node formed will be stored at index nodes in the array pix_freq and the subsequent parent nodes obtained will be stored at higher values of index.
// Building Huffman Tree float sumprob; int sumpix; int n = 0, k = 0; int nextnode = nodes; // Since total number of // nodes in Huffman Tree // is 2*nodes-1 while (n < nodes - 1) { // Adding the lowest // two probabilities sumprob = huffcodes[nodes - n - 1].freq + huffcodes[nodes - n - 2].freq; sumpix = huffcodes[nodes - n - 1].pix + huffcodes[nodes - n - 2].pix; // Appending to the pix_freq Array pix_freq[nextnode].pix = sumpix; pix_freq[nextnode].freq = sumprob; pix_freq[nextnode].left = &pix_freq[huffcodes[nodes - n - 2].arrloc]; // arrloc points to the location // of the child node in the // pix_freq array pix_freq[nextnode].right = &pix_freq[huffcodes[nodes - n - 1].arrloc]; pix_freq[nextnode].code[0] = '\0' ; // Using sum of the pixel values as // new representation for the new node // since unlike strings, we cannot // concatenate because the pixel values // are stored as integers. However, if we // store the pixel values as strings // we can use the concatenated string as // a representation of the new node. i = 0; // Sorting and Updating the huffcodes // array simultaneously New position // of the combined node while (sumprob <= huffcodes[i].freq) i++; // Inserting the new node in // the huffcodes array for (k = nnz; k >= 0; k--) { if (k == i) { huffcodes[k].pix = sumpix; huffcodes[k].freq = sumprob; huffcodes[k].arrloc = nextnode; } else if (k > i) // Shifting the nodes below // the new node by 1 // For inserting the new node // at the updated position k huffcodes[k] = huffcodes[k - 1]; } n += 1; nextnode += 1; } |
How does this code work?
Let’s see that by an example:
Initially
After the First Iteration
As you can see, after first iteration, the new node has been appended to the pix_freq array, and it’s index is 46. And in the huffcode the new node has been added at its new position after sorting, and the arrloc points to the index of the new node in the pix_freq array. Also, notice that, all array elements after the new node (at index 11) in huffcodes array has been shifted by 1 and the array element with pixel value 188 gets excluded in the updated array.
Now, in the next(2nd) iteration 170 and 174 will be combined, since 175 and 188 has already been combined.
Index of the lowest two nodes in terms of the variable nodes and n is
left_child_index=(nodes-n-2)
and
right_child_index=(nodes-n-1)
In 2nd iteration, value of n is 1 (since n starts from 0).
For node having value 170
left_child_index=46-1-2=43
For node having value 174
right_child_index=46-1-1=44
Hence, even if 175 remains the last element of the updated array, it will get excluded.
Another thing to notice in this code, is that, if in any subsequent iteration, the new node formed in the first iteration is the child of another new node, then the pointer to the new node obtained in the first iteration, can be accessed using the arrloc stored in huffcodes array, as is done in this line of code
pix_freq[nextnode].right = &pix_freq[huffcodes[nodes - n - 1].arrloc]; |
Step 8
Backtrack from the root to the leaf nodes to assign code words
Starting from the root, we assign ‘0’ to the left child node and ‘1’ to the right child node.
Now, since we were appending the newly formed nodes to the array pix_freq, hence it is expected that the root will be the last element of the array at index totalnodes-1.
Hence, we start from the last index and iterate over the array, assigning code words to the left and right child nodes, till we reach the first parent node formed at index nodes. We don’t iterate over the leaf nodes since those nodes has NULL pointers as their left and right child.
// Assigning Code through backtracking char left = '0' ; char right = '1' ; int index; for (i = totalnodes - 1; i >= nodes; i--) { if (pix_freq[i].left != NULL) { strconcat(pix_freq[i].left->code, pix_freq[i].code, left); } if (pix_freq[i].right != NULL) { strconcat(pix_freq[i].right->code, pix_freq[i].code, right); } } |
void strconcat( char * str, char * parentcode, char add) { int i = 0; while (*(parentcode + i) != '\0' ) { *(str + i) = *(parentcode + i); i++; } str[i] = add; str[i + 1] = '\0' ; } |
Final Step
Encode the Image
// Encode the Image int pix_val; // Writing the Huffman encoded // Image into a text file FILE * imagehuff = fopen ( "encoded_image.txt" , "wb" ); for (r = 0; r < height; r++) for (c = 0; c < width; c++) { pix_val = image[r]; for (i = 0; i < nodes; i++) if (pix_val == pix_freq[i].pix) fprintf (imagehuff, "%s" , pix_freq[i].code); } fclose (imagehuff); // Printing Huffman Codes printf ( "Huffmann Codes::\n\n" ); printf ( "pixel values -> Code\n\n" ); for (i = 0; i < nodes; i++) { if (snprintf(NULL, 0, "%d" , pix_freq[i].pix) == 2) printf ( " %d -> %s\n" , pix_freq[i].pix, pix_freq[i].code); else printf ( " %d -> %s\n" , pix_freq[i].pix, pix_freq[i].code); } |
Another important point to note
Average number of bits required to represent each pixel.
// Calculating Average number of bits float avgbitnum = 0; for (i = 0; i < nodes; i++) avgbitnum += pix_freq[i].freq * codelen(pix_freq[i].code); |
The function codelen calculates the length of codewords OR, the number of bits required to represent the pixel.
int codelen( char * code) { int l = 0; while (*(code + l) != '\0' ) l++; return l; } |
For this specific example image
Average number of bits = 5.343750
The printed results for the example image
pixel values -> Code 72 -> 011001 75 -> 010100 79 -> 110111 83 -> 011010 84 -> 00100 87 -> 011100 89 -> 010000 93 -> 010111 94 -> 00011 96 -> 101010 98 -> 101110 100 -> 000101 102 -> 0001000 103 -> 0001001 105 -> 110110 106 -> 00110 110 -> 110100 114 -> 110101 115 -> 1100 118 -> 011011 119 -> 011000 122 -> 1110 124 -> 011110 125 -> 011111 127 -> 0000 128 -> 011101 130 -> 010010 131 -> 010011 136 -> 00111 138 -> 010001 139 -> 010110 140 -> 1111 142 -> 00101 143 -> 010101 146 -> 10010 148 -> 101011 149 -> 101000 153 -> 101001 155 -> 10011 163 -> 101111 167 -> 101100 169 -> 101101 170 -> 100010 174 -> 100011 175 -> 100000 188 -> 100001
Encoded Image :
0111010101000110011101101010001011010000000101111 00010001101000100100100100010010101011001101110111001 00000001100111101010010101100001111000110110111110010 10110001000000010110000001100001100001110011011110000 10011001101111111000100101111100010100011110000111000 01101001110101111100000111101100001110010010110101000 0111101001100101101001010111
This encoded Image is 342 bits in length, where as the total number of bits in the original image is 512 bits. (64 pixels each of 8 bits).
Image Compression Code
// C Code for // Image Compression #include <stdio.h> #include <stdlib.h> // function to calculate word length int codelen( char * code) { int l = 0; while (*(code + l) != '\0' ) l++; return l; } // function to concatenate the words void strconcat( char * str, char * parentcode, char add) { int i = 0; while (*(parentcode + i) != '\0' ) { *(str + i) = *(parentcode + i); i++; } if (add != '2' ) { str[i] = add; str[i + 1] = '\0' ; } else str[i] = '\0' ; } // function to find fibonacci number int fib( int n) { if (n <= 1) return n; return fib(n - 1) + fib(n - 2); } // Driver code int main() { int i, j; char filename[] = "Input_Image.bmp" ; int data = 0, offset, bpp = 0, width, height; long bmpsize = 0, bmpdataoff = 0; int ** image; int temp = 0; // Reading the BMP File FILE * image_file; image_file = fopen (filename, "rb" ); if (image_file == NULL) { printf ( "Error Opening File!!" ); exit (1); } else { // Set file position of the // stream to the beginning // Contains file signature // or ID "BM" offset = 0; // Set offset to 2, which // contains size of BMP File offset = 2; fseek (image_file, offset, SEEK_SET); // Getting size of BMP File fread (&bmpsize, 4, 1, image_file); // Getting offset where the // pixel array starts // Since the information is // at offset 10 from the start, // as given in BMP Header offset = 10; fseek (image_file, offset, SEEK_SET); // Bitmap data offset fread (&bmpdataoff, 4, 1, image_file); // Getting height and width of the image // Width is stored at offset 18 and // height at offset 22, each of 4 bytes fseek (image_file, 18, SEEK_SET); fread (&width, 4, 1, image_file); fread (&height, 4, 1, image_file); // Number of bits per pixel fseek (image_file, 2, SEEK_CUR); fread (&bpp, 2, 1, image_file); // Setting offset to start of pixel data fseek (image_file, bmpdataoff, SEEK_SET); // Creating Image array image = ( int **) malloc (height * sizeof ( int *)); for (i = 0; i < height; i++) { image[i] = ( int *) malloc (width * sizeof ( int )); } // int image[height][width] // can also be done // Number of bytes in // the Image pixel array int numbytes = (bmpsize - bmpdataoff) / 3; // Reading the BMP File // into Image Array for (i = 0; i < height; i++) { for (j = 0; j < width; j++) { fread (&temp, 3, 1, image_file); // the Image is a // 24-bit BMP Image temp = temp & 0x0000FF; image[i][j] = temp; } } } // Finding the probability // of occurrence int hist[256]; for (i = 0; i < 256; i++) hist[i] = 0; for (i = 0; i < height; i++) for (j = 0; j < width; j++) hist[image[i][j]] += 1; // Finding number of // non-zero occurrences int nodes = 0; for (i = 0; i < 256; i++) if (hist[i] != 0) nodes += 1; // Calculating minimum probability float p = 1.0, ptemp; for (i = 0; i < 256; i++) { ptemp = (hist[i] / ( float )(height * width)); if (ptemp > 0 && ptemp <= p) p = ptemp; } // Calculating max length // of code word i = 0; while ((1 / p) > fib(i)) i++; int maxcodelen = i - 3; // Defining Structures pixfreq struct pixfreq { int pix, larrloc, rarrloc; float freq; struct pixfreq *left, *right; char code[maxcodelen]; }; // Defining Structures // huffcode struct huffcode { int pix, arrloc; float freq; }; // Declaring structs struct pixfreq* pix_freq; struct huffcode* huffcodes; int totalnodes = 2 * nodes - 1; pix_freq = ( struct pixfreq*) malloc ( sizeof ( struct pixfreq) * totalnodes); huffcodes = ( struct huffcode*) malloc ( sizeof ( struct huffcode) * nodes); // Initializing j = 0; int totpix = height * width; float tempprob; for (i = 0; i < 256; i++) { if (hist[i] != 0) { // pixel intensity value huffcodes[j].pix = i; pix_freq[j].pix = i; // location of the node // in the pix_freq array huffcodes[j].arrloc = j; // probability of occurrence tempprob = ( float )hist[i] / ( float )totpix; pix_freq[j].freq = tempprob; huffcodes[j].freq = tempprob; // Declaring the child of leaf // node as NULL pointer pix_freq[j].left = NULL; pix_freq[j].right = NULL; // initializing the code // word as end of line pix_freq[j].code[0] = '\0' ; j++; } } // Sorting the histogram struct huffcode temphuff; // Sorting w.r.t probability // of occurrence for (i = 0; i < nodes; i++) { for (j = i + 1; j < nodes; j++) { if (huffcodes[i].freq < huffcodes[j].freq) { temphuff = huffcodes[i]; huffcodes[i] = huffcodes[j]; huffcodes[j] = temphuff; } } } // Building Huffman Tree float sumprob; int sumpix; int n = 0, k = 0; int nextnode = nodes; // Since total number of // nodes in Huffman Tree // is 2*nodes-1 while (n < nodes - 1) { // Adding the lowest two probabilities sumprob = huffcodes[nodes - n - 1].freq + huffcodes[nodes - n - 2].freq; sumpix = huffcodes[nodes - n - 1].pix + huffcodes[nodes - n - 2].pix; // Appending to the pix_freq Array pix_freq[nextnode].pix = sumpix; pix_freq[nextnode].freq = sumprob; pix_freq[nextnode].left = &pix_freq[huffcodes[nodes - n - 2].arrloc]; pix_freq[nextnode].right = &pix_freq[huffcodes[nodes - n - 1].arrloc]; pix_freq[nextnode].code[0] = '\0' ; i = 0; // Sorting and Updating the // huffcodes array simultaneously // New position of the combined node while (sumprob <= huffcodes[i].freq) i++; // Inserting the new node // in the huffcodes array for (k = nodes; k >= 0; k--) { if (k == i) { huffcodes[k].pix = sumpix; huffcodes[k].freq = sumprob; huffcodes[k].arrloc = nextnode; } else if (k > i) // Shifting the nodes below // the new node by 1 // For inserting the new node // at the updated position k huffcodes[k] = huffcodes[k - 1]; } n += 1; nextnode += 1; } // Assigning Code through // backtracking char left = '0' ; char right = '1' ; int index; for (i = totalnodes - 1; i >= nodes; i--) { if (pix_freq[i].left != NULL) strconcat(pix_freq[i].left->code, pix_freq[i].code, left); if (pix_freq[i].right != NULL) strconcat(pix_freq[i].right->code, pix_freq[i].code, right); } // Encode the Image int pix_val; int l; // Writing the Huffman encoded // Image into a text file FILE * imagehuff = fopen ( "encoded_image.txt" , "wb" ); for (i = 0; i < height; i++) for (j = 0; j < width; j++) { pix_val = image[i][j]; for (l = 0; l < nodes; l++) if (pix_val == pix_freq[l].pix) fprintf (imagehuff, "%s" , pix_freq[l].code); } // Printing Huffman Codes printf ( "Huffmann Codes::\n\n" ); printf ( "pixel values -> Code\n\n" ); for (i = 0; i < nodes; i++) { if (snprintf(NULL, 0, "%d" , pix_freq[i].pix) == 2) printf ( " %d -> %s\n" , pix_freq[i].pix, pix_freq[i].code); else printf ( " %d -> %s\n" , pix_freq[i].pix, pix_freq[i].code); } // Calculating Average Bit Length float avgbitnum = 0; for (i = 0; i < nodes; i++) avgbitnum += pix_freq[i].freq * codelen(pix_freq[i].code); printf ( "Average number of bits:: %f" , avgbitnum); } |
Code Compilation and Execution :
First, save the file as “huffman.c“.
For compiling the C file, Open terminal (Ctrl + Alt + T) and enter the following line of code :
gcc -o huffman huffman.c
For executing the code enter
./huffman
Image Compression Code Output :
Huffman Tree :
Please Login to comment...