Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Icosikaiheptagonal Number

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a number N, the task is to find Nth icosikaiheptagonal number.
 

An icosikaiheptagonal number is a class of figurate numbers. It has 27 – sided polygon called icosikaiheptagon. The N-th icosikaiheptagonal number count’s the 27 number of dots and all other dots are surrounding with a common sharing corner and make a pattern. The first few icosikaiheptagonol numbers are 1, 27, 78, 154 … 
 

Examples: 
 

Input: N = 2 
Output: 27 
Explanation: 
The second icosikaiheptagonol number is 27. 
Input: N = 3 
Output: 78 
 

 

Approach: The N-th icosikaiheptagonal number is given by the formula:
 

  • Nth term of s sided polygon = \frac{((s-2)n^2 - (s-4)n)}{2}
     
  • Therefore Nth term of 27 sided polygon is 
     

Tn =\frac{((27-2)n^2 - (27-4)n)}{2} =\frac{(25n^2 - 23n)}{2}
 

  •  

Below is the implementation of the above approach:
 

C++




// C++ program to find N-th
// icosikaiheptagonal number
#include <bits/stdc++.h>
 
using namespace std;
// Function to find the nth
// icosikaiheptagonal Number
int icosikaiheptagonalNum(int n)
{
    return (25 * n * n - 23 * n) / 2;
}
 
// Driver code
int main()
{
    int n = 3;
 
    cout << "3rd icosikaiheptagonal Number is "
         << icosikaiheptagonalNum(n);
 
    return 0;
}


Java




// Java program to find N-th
// icosikaiheptagonal number
class GFG{
 
// Function to find the nth
// icosikaiheptagonal number
static int icosikaiheptagonalNum(int n)
{
    return (25 * n * n - 23 * n) / 2;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 3;
    System.out.print("3rd icosikaiheptagonal Number is " +
                                icosikaiheptagonalNum(n));
}
}
 
// This code is contributed by shubham


Python3




# Python3 program to find N-th
# icosikaiheptagonal number
 
# Function to find the nth
# icosikaiheptagonal Number
def icosikaiheptagonalNum(n):
 
    return (25 * n * n - 23 * n) // 2;
 
# Driver code
n = 3;
print("3rd icosikaiheptagonal Number is ",
                icosikaiheptagonalNum(n));
 
# This code is contributed by Code_Mech


C#




// C# program to find N-th
// icosikaiheptagonal number
using System;
 
class GFG{
 
// Function to find the nth
// icosikaiheptagonal number
static int icosikaiheptagonal(int n)
{
    return (25 * n * n - 23 * n) / 2;
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 3;
     
    Console.Write("3rd icosikaiheptagonal Number is " +
                                icosikaiheptagonal(n));
}
}
 
// This code is contributed by shivanisinghss2110


Javascript




<script>
 
// javascript program to find N-th
// icosikaiheptagonal number
 
// Function to find the nth
// icosikaiheptagonal Number
function icosikaiheptagonalNum( n)
{
    return (25 * n * n - 23 * n) / 2;
}
 
// Driver code
let n = 3;
    document.write("3rd icosikaiheptagonal Number is "+ icosikaiheptagonalNum(n));
 
// This code is contributed by todaysgaurav
 
</script>


Output: 

3rd icosikaiheptagonal Number is 78

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Reference: http://www.2dcurves.com/line/linep.html

 


My Personal Notes arrow_drop_up
Last Updated : 23 Jun, 2021
Like Article
Save Article
Similar Reads
Related Tutorials