Skip to content
Related Articles

Related Articles

Improve Article

How to Remove the Legend in Matplotlib?

  • Last Updated : 01 Feb, 2021

Matplotlib is one of the most popular data visualization libraries present in Python. Using this matplotlib library, if we want to visualize more than a single variable, we might want to explain what each variable represents. For this purpose, there is a function called legend() present in matplotlib library. This legend is a small area on the graph describing what each variable represents.

In order to remove the legend, there are four ways. They are : 

  • Using .remove()
  • Using .set_visible()
  • Fix legend_ attribute of the required Axes object = None
  • Using label=_nolegend_   

Method 1: Using .remove()

Example 1: By using ax.get_legend().remove() method, legend can be removed from figure in matplotlib.

Python3






import numpy as np
import matplotlib.pyplot as plt
 
x = np.linspace(-3, 3, 100)
y1 = np.power(x, 2)
y2 = np.power(x, 3)
 
fig, ax = plt.subplots()
 
ax.plot(x, y1, c = 'r',label = 'x^2')
ax.plot(x, y2, c = 'g',label = 'x^3')
 
leg = plt.legend()
 
ax.get_legend().remove()
 
plt.show()


 
 Output : 

We can see that there is no legend in the above figure.

Example 2: More than one subplots : 

In the case of more than one subplot, we can mention the required subplot object for which we want to remove the legend. Here, we have written axs[1].get_legend().remove() which means we are removing legend for second subplot specifically.
 

Python3




import numpy as np
import matplotlib.pyplot as plt
 
x = np.linspace(-3, 3, 100)
y1 = np.power(x, 2)
y2 = np.power(x, 3)
 
fig, axs = plt.subplots(2, 1)
 
axs[0].plot(x, y1, c = 'r',label = 'x^2')
axs[1].plot(x, y2, c = 'g',label = 'x^3')
 
axs[0].legend(loc = 'upper left')
axs[1].legend(loc = 'upper left')
 
axs[1].get_legend().remove()
 
 
plt.show()


 
 

Output : 



 

In the above figure, we removed the legend for the second subplot specifically. The first subplot will still have a legend.

 

Method 2: Using set_visible()
 

Example 1: By using ax.get_legend().set_visible(False) method, legend can be removed from figure in matplotlib.

Python3




import numpy as np
import matplotlib.pyplot as plt
 
x = np.linspace(-3, 3, 1000)
y1 = np.sin(x)
y2 = np.cos(x)
 
fig, ax = plt.subplots()
 
ax.plot(x, y1,c = 'r',label = 'Sine')
ax.plot(x, y2,c = 'g',label = 'Cosine')
 
leg = plt.legend()
 
ax.get_legend().set_visible(False)
 
plt.show()


 
 

Output :

 



 

We can see that there is no legend in the above figure.

Example-2. More than one subplots  :

In case of more than one subplot, we can mention the required subplot object for which we want to remove the legend. Here, we have written axs[1].get_legend().set_visible(False) which means we are removing legend for second subplot specifically.

Python3




import numpy as np
import matplotlib.pyplot as plt
 
x = np.linspace(-3,3,1000)
y1 = np.sin(x)
y2 = np.cos(x)
 
fig, axs = plt.subplots(2,1)
 
axs[0].plot(x,y1,c='r',label = 'Sine')
axs[1].plot(x,y2,c='g',label = 'Cosine')
 
axs[0].legend(loc='upper left')
axs[1].legend(loc='upper left')
 
axs[1].get_legend().set_visible(False)
 
 
plt.show()


Output : 

In the above figure, we removed legend for the second subplot specifically. The first subplot will still have legend.

Method 3: Fix legend_ attribute of the required Axes object = None :

Example 1: By using ax.legend_ = None, legend can be removed from figure in matplotlib.
 



Python3




import numpy as np
import matplotlib.pyplot as plt
 
x = np.linspace(-3, 3, 1000)
y1 = np.sin(x)
y2 = np.cos(x)
 
fig, ax = plt.subplots()
 
ax.plot(x, y1,c = 'r',label = 'Sine')
ax.plot(x, y2,c = 'g',label = 'Cosine')
leg = plt.legend()
ax.legend_ = None
 
plt.show()


Output:

We can see that there is no legend in the above figure.

Example 2: More than one subplot:

In the case of more than one subplot, we can mention the required subplot object for which we want to remove the legend. Here, we have written axs[0].legend_ = None which means we are removing legend for the first subplot specifically.the 

Python3




import numpy as np
import matplotlib.pyplot as plt
 
x = np.linspace(-3, 3, 1000)
y1 = np.sin(x)
y2 = np.cos(x)
 
fig, axs = plt.subplots(2, 1)
 
axs[0].plot(x, y1, c = 'r',label = 'Sine')
axs[1].plot(x, y2,c = 'g',label = 'Cosine')
axs[0].legend(loc = 'upper left')
axs[1].legend(loc = 'upper left')
axs[0].legend_ = None
 
plt.show()


Output:

In the above figure, we removed legend for the first subplot specifically. The second subplot will still have legend.



Method 4: Using label = _legend_

Example 1: By sending label = ‘_nolegend_’ argument in ax.plot(), legend can be removed from figure in matplotlib.

Python3




import numpy as np
import matplotlib.pyplot as plt
 
x = np.linspace(-3, 3, 100)
y1 = np.power(x, 2)
y2 = np.power(x, 3)
 
fig, ax = plt.subplots()
 
ax.plot(x, y1, c = 'r',label = '_nolegend_')
ax.plot(x, y2,c = 'g',label = '_nolegend_')
 
leg = plt.legend()
 
plt.show()


 
 

Output: 

 

Example-2. More than one subplots  :

In case of more than one subplot, we can mention the required subplot object for which we want to remove the legend. Here, we have written axs[0].plot(x,y1,c=’r’,label = ‘_nolegend_’) which means we are removing legend for first subplot specifically.

Python3




import numpy as np
import matplotlib.pyplot as plt
 
x = np.linspace(-3,3,100)
y1 = np.power(x,2)
y2 = np.power(x,3)
 
fig, axs = plt.subplots(2,1)
 
axs[0].plot(x,y1,c='r',label = '_nolegend_')
axs[1].plot(x,y2,c='g',label = 'x^3')
 
axs[0].legend(loc='upper left')
axs[1].legend(loc='upper left')
 
 
plt.show()


Output : 

 In the above figure, we removed legend for the first subplot specifically. The second subplot will still have legend.

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :