Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

How to Estimate the Gradient of a Function in One or More Dimensions in PyTorch?

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

In this article, we are going to see how to estimate the gradient of a function in one or more dimensions in PyTorch. 

torch.gradient() function

torch.gradient() method estimates the gradient of a function in one or more dimensions using the second-order accurate central differences method, and the function can be defined on a real or complex domain. For controllers and optimizers, gradient estimations are quite valuable. Gradient descent is a prominent optimization method that requires an estimate of the output derivatives with respect to each input at a given location. Let’s have a look at the syntax of the given method first:

Syntax: torch.gradient(values)

Parameters:

  • values(Tensor): this parameter is represents the values of the function.

Example 1

In this example, we estimate the gradient of a function for a 1D tensor.

Python3




# Import required library
import torch
  
# define the tensor
tens = torch.tensor([-2., 1., -3., 4., 5.])
print(" Input tensor: ", tens)
  
# define a function
def fun(tens):
    return tens**2+5
  
# values of function
values = fun(tens)
  
# display values
print(" Function Values: ", values)
  
# estimate the gradients of fun
grad = torch.gradient(values)
  
# Display result
print(" Estimated Gradients of fun() - ", grad)


Output:

 

Example 2

In this example, we estimate the gradient of a function for a 2D tensor.

Python3




# Import required library
import torch
  
# define the tensor
tens = torch.tensor([[-1., 3., -5.],
                     [-4., 5.2.],
                     [-2., 3.4.], ])
  
print("\n Input tensor: \n", tens)
  
# define a function
def fun(tens):
    return tens**3
  
# values of function
values = fun(tens)
  
# display values
print("\n Function Values: \n", values)
  
# estimate the gradients of fun in dim=0
grad_dim_0 = torch.gradient(values, dim=0)
print("\n Estimated Gradients of fun() in dim=0 - \n", grad_dim_0)
  
# estimate the gradients of fun in dim=1
grad_dim_1 = torch.gradient(values, dim=1)
print("\n Estimated Gradients of fun() in dim=1 - \n", grad_dim_1)


Output:

 


My Personal Notes arrow_drop_up
Last Updated : 05 Jun, 2022
Like Article
Save Article
Similar Reads
Related Tutorials