How to Convert a List to a DataFrame Row in Python?
In this article, we will discuss how to convert a list to a dataframe row in Python.
Method 1: Using T function
This is known as the Transpose function, this will convert the list into a row. Here each value is stored in one column.
Syntax: pandas.DataFrame(list).T
Example:
Python3
# import pandas module import pandas as pd # consider a list list1 = [ "durga" , "ramya" , "meghana" , "mansa" ] # convert the list into dataframe row data = pd.DataFrame(list1).T # add columns data.columns = [ 'student1' , 'student2' , 'student3' , 'student4' ] # display data |
Output:
Method 2: Creating from multi-dimensional list to dataframe row
Here we are converting a list of lists to dataframe rows
Syntax: pd.DataFrame(list)
where list is the list of lists
Example:
Python3
# import pandas module import pandas as pd # consider a list list1 = [[ "durga" , "java" , 90 ], [ "gopi" , "python" , 80 ], [ "pavani" , "c/cpp" , 94 ], [ "sravya" , "html" , 90 ]] # convert the list into dataframe row data = pd.DataFrame(list1) # add columns data.columns = [ 'student1' , 'subject' , 'marks' ] # display data |
Output:
Method 3: Using a list with index and columns
Here we are getting data (rows ) from the list and assigning columns to these values from columns
Syntax: pd.DataFrame(list, columns, dtype )
where
- list is the list of input values
- columns are the column names for list of values
- dtype is the column data type
Example:
Python3
# import pandas module import pandas as pd # consider a list list1 = [[ "durga" , "java" , 90 ], [ "gopi" , "python" , 80 ], [ "pavani" , "c/cpp" , 94 ], [ "sravya" , "html" , 90 ]] # convert the list into dataframe row by adding columns data = pd.DataFrame(list1, columns = [ 'student1' , 'subject' , 'marks' ]) # display data |
Output:
Method 4: Using zip() function
Here we are taking separate lists as input such that each list will act as one column, so the number of lists = n columns in the dataframe, and using zip function we are combining the lists.
Syntax pd.DataFrame(list(zip(list1,list2,.,list n)),columns)
where
- columns is the column for the list values
- list1.list n represent number of input lists for columns
Example:
Python3
# import pandas module import pandas as pd # consider a list list1 = [ "durga" , "ramya" , "sravya" ] list2 = [ "java" , "php" , "mysql" ] list3 = [ 67 , 89 , 65 ] # convert the list into dataframe row by # using zip() data = pd.DataFrame( list ( zip (list1, list2, list3)), columns = [ 'student' , 'subject' , 'marks' ]) # display data |
Output:
Method 5: Using a list of dictionary
Here we are passing the individual lists which act as columns in the data frame to keys to the dictionary, so by passing the dictionary into dataframe() we can convert list to dataframe.
Syntax: pd.DataFrame{‘key’: list1, ‘key’: list2, ……..,’key’: listn}
These keys will be the column names in the dataframe.
Example:
Python3
# import pandas module import pandas as pd # consider a list list1 = [ "durga" , "ramya" , "sravya" ] list2 = [ "java" , "php" , "mysql" ] list3 = [ 67 , 89 , 65 ] # convert the list into dataframe row by # using dictionary dictionary = { 'name' : list1, 'subject' : list2, 'marks' : list3} data = pd.DataFrame(dictionary) # display data |
Output:
Method 6: Creating from multi-dimensional list to dataframe row with columns
Here we are taking input from multi-dimensional lists and assigning column names in the DataFrame() function
Syntax: pd.DataFrame(list,columns)
where
- list is an multidimensional list
- columns are the column names
Example:
Python3
# import pandas module import pandas as pd # consider a list list1 = [[ "durga" , "java" , 90 ], [ "gopi" , "python" , 80 ], [ "pavani" , "c/cpp" , 94 ], [ "sravya" , "html" , 90 ]] # convert the list into dataframe # row using columns from multi lists data = pd.DataFrame(list1, columns = [ 'student1' , 'subject' , 'marks' ]) # display data |
Output:
Please Login to comment...