Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

How to compute the inverse hyperbolic sine in PyTorch?

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

In this article, we are going to discuss how to compute the inverse hyperbolic sine in PyTorch. 

torch.asinh() method:

The torch.asinh() method is used to compute the inverse hyperbolic sine of each element present in a given input tensor. This method accepts both real and complex-valued as input. It supports input tensors of any dimension. This method returns a tensor after computing the inverse hyperbolic sine of each element in a given input tensor. before moving further let’s see the syntax of this method.

Syntax: torch.asinh(input, *, out=None)

Parameters:

  • input: This is our input tensor.
  • out (optional) – This is our output tensor. 

Return: This method returns a tensor after computing the inverse hyperbolic sine of each element in a given input tensor.

Example 1:

In this example, we are computing the inverse hyperbolic sine for the real-valued 1D tensor.

Python3




# Import required library
import torch
  
# creating a input tensor
tens = torch.tensor([3., 1.3, 2., 2.3, -2.3])
  
# print the input tensor
print(" Input Tensor - ", tens)
  
# compute the inverse hyperbolic sine 
# of input tensor
tens_inv_hsin = torch.asinh(tens)
  
# print the above computed tensor
print(" Computed Inverse Hyperbolic Sine Tensor - "
      tens_inv_hsin)


Output:

 

Example 2:

In this example, we are computing the inverse hyperbolic sine for the complex-valued 1D tensor.

Python3




# Import required library
import torch
  
# creating a input tensor
tens = torch.tensor([2.1+3j, 2.+2.j, 4.+2.j, 2.4+2.j])
  
# print the input tensor
print(" Input Tensor - ", tens)
  
# compute the inverse hyperbolic sine 
# of input tensor
tens_inv_hsin = torch.asinh(tens)
  
# print the above computed tensor
print(" Computed Inverse Hyperbolic Sine - ",
      tens_inv_hsin)


Output:

 

Example 3:

In this example, we are computing the inverse hyperbolic sine for the real-valued 2D tensor.

Python3




# Import required library
import torch
  
# define a 2D input tensor
tens = torch.tensor([[1., 2.3, 1.3],
                     [2.1, 3., -2.3],
                     [3.2, 5.2, 2.3]])
  
# print the input tensor
print("\n Input Tensor: \n", tens)
  
# compute the inverse hyperbolic sine of 
# input tensor
tens_inv_hsin = torch.asinh(tens)
  
# print the above computed tensor
print("\n Computed Inverse Hyperbolic Sine: \n "
      tens_inv_hsin)


Output:

 

Example 4:

In this example, we are computing the inverse hyperbolic sine for the complex-valued 2D tensor.

Python3




# Import required library
import torch
  
# define a 2D input tensor
tens = torch.tensor([[2.1+3j, 2.+3.j, 3.1-3.5j],
                     [1.3+2j, 2.3-2.3j, 4.+3.j],
                     [3.2+5j, 6.+3.j, 4.2-3.2j]])
  
# print the input tensor
print("\n Input Tensor: \n", tens)
  
# compute the inverse hyperbolic sine
# of input tensor
tens_inv_hsin = torch.asinh(tens)
  
# print the above computed tensor
print("\n Computed Inverse Hyperbolic Sine: \n "
      tens_inv_hsin)


Output:

 


My Personal Notes arrow_drop_up
Last Updated : 27 Jun, 2022
Like Article
Save Article
Similar Reads
Related Tutorials