How to compute the inverse hyperbolic sine in PyTorch?
In this article, we are going to discuss how to compute the inverse hyperbolic sine in PyTorch.
torch.asinh() method:
The torch.asinh() method is used to compute the inverse hyperbolic sine of each element present in a given input tensor. This method accepts both real and complex-valued as input. It supports input tensors of any dimension. This method returns a tensor after computing the inverse hyperbolic sine of each element in a given input tensor. before moving further let’s see the syntax of this method.
Syntax: torch.asinh(input, *, out=None)
Parameters:
- input: This is our input tensor.
- out (optional) – This is our output tensor.
Return: This method returns a tensor after computing the inverse hyperbolic sine of each element in a given input tensor.
Example 1:
In this example, we are computing the inverse hyperbolic sine for the real-valued 1D tensor.
Python3
# Import required library import torch # creating a input tensor tens = torch.tensor([ 3. , 1.3 , 2. , 2.3 , - 2.3 ]) # print the input tensor print ( " Input Tensor - " , tens) # compute the inverse hyperbolic sine # of input tensor tens_inv_hsin = torch.asinh(tens) # print the above computed tensor print ( " Computed Inverse Hyperbolic Sine Tensor - " , tens_inv_hsin) |
Output:

Example 2:
In this example, we are computing the inverse hyperbolic sine for the complex-valued 1D tensor.
Python3
# Import required library import torch # creating a input tensor tens = torch.tensor([ 2.1 + 3j , 2. + 2.j , 4. + 2.j , 2.4 + 2.j ]) # print the input tensor print ( " Input Tensor - " , tens) # compute the inverse hyperbolic sine # of input tensor tens_inv_hsin = torch.asinh(tens) # print the above computed tensor print ( " Computed Inverse Hyperbolic Sine - " , tens_inv_hsin) |
Output:

Example 3:
In this example, we are computing the inverse hyperbolic sine for the real-valued 2D tensor.
Python3
# Import required library import torch # define a 2D input tensor tens = torch.tensor([[ 1. , 2.3 , 1.3 ], [ 2.1 , 3. , - 2.3 ], [ 3.2 , 5.2 , 2.3 ]]) # print the input tensor print ( "\n Input Tensor: \n" , tens) # compute the inverse hyperbolic sine of # input tensor tens_inv_hsin = torch.asinh(tens) # print the above computed tensor print ( "\n Computed Inverse Hyperbolic Sine: \n " , tens_inv_hsin) |
Output:

Example 4:
In this example, we are computing the inverse hyperbolic sine for the complex-valued 2D tensor.
Python3
# Import required library import torch # define a 2D input tensor tens = torch.tensor([[ 2.1 + 3j , 2. + 3.j , 3.1 - 3.5j ], [ 1.3 + 2j , 2.3 - 2.3j , 4. + 3.j ], [ 3.2 + 5j , 6. + 3.j , 4.2 - 3.2j ]]) # print the input tensor print ( "\n Input Tensor: \n" , tens) # compute the inverse hyperbolic sine # of input tensor tens_inv_hsin = torch.asinh(tens) # print the above computed tensor print ( "\n Computed Inverse Hyperbolic Sine: \n " , tens_inv_hsin) |
Output:

Please Login to comment...