Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

How to compute the eigenvalues and eigenvectors of a square matrix in PyTorch?

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

In this article, we are going to discuss how to compute the eigenvalues and eigenvectors of a square matrix in PyTorch.

Compute the eigenvalues and eigenvectors of a square matrix in PyTorch

torch.linalg.eig() method computes the eigenvalue decomposition of a square matrix or a batch of matrices. The decomposition exists if the input matrix is diagonalizable. This method also supports the input of float, double, cfloat, and cdouble data types. It will return a named tuple (eigenvalues, eigenvectors). The eigenvalues and eigenvectors are always complex-valued and the eigenvectors are given by columns of eigenvectors. Below is the syntax of torch.linalg.eig() method.

Syntax: torch.linalg.eig(mat)

Parameter:

  • mat (Tensor): square matrix or a batch of matrices.

Return: It will return a named tuple (eigenvalues, eigenvectors).

Example 1:

In this example, we see how to compute the eigenvalues and eigenvectors of a square matrix.

Python3




# import the required library
import torch
  
# define a 3x3 square matrix
mat = torch.tensor([[-0.3371, -0.2975, 1.8739],
                    [1.4078, 1.6856, 0.3799],
                    [1.9002, -0.4428, 1.5552]])
  
# print the above created matrix
print("\n Matrix: \n", mat)
  
# compute the eigenvalues and eigenvectors
eigenvalues, eigenvectors = torch.linalg.eig(mat)
  
# print output
print("\n Eigenvalues: \n", eigenvalues)
print("\n Eigenvectors: \n", eigenvectors)


Output:

EigenValues and EigenVectors

EigenValues and EigenVectors

Example 2:

In this example, we see how to compute the eigenvalues and eigenvectors of a batch of matrices.

Python3




# import the required library
import torch
  
# define a batch of matrices
mat = torch.tensor([[[-0.1345, -0.7437, 1.2377],
                     [0.9337, 1.6473, 0.4346],
                     [-1.6345, 0.9344, -0.2456]],
                    [[1.3343, -1.3456, 0.7373],
                     [1.4334, 0.2473, 1.1333],
                     [-1.5341, 1.5348, -1.4567]]])
  
# print the above batch of matrices
print("\n Matrix: \n", mat)
  
# compute the eigenvalues and eigenvectors
eigenvalues, eigenvectors = torch.linalg.eig(mat)
  
# print output
print("\n Eigenvalues: \n", eigenvalues)
print("\n Eigenvectors: \n", eigenvectors)


Output:

EigenValues and EigenVectors

EigenValues and EigenVectors


My Personal Notes arrow_drop_up
Last Updated : 09 Oct, 2022
Like Article
Save Article
Similar Reads
Related Tutorials