How to Calculate Quantiles by Group in Pandas?
In this article, how to calculate quantiles by group in Pandas using Python.
There are many methods to calculate the quantile, but pandas provide groupby.quantile() function to find it in a simple few lines of code. This is the Method to use when the desired quantile falls between two points.
Syntax:
DataFrameGroupBy.quantile(self, q=0.5, interpolation=’linear’)
Parameters:
- q : float or array-like, default 0.5 (50% quantile) Values are given between 0 and 1 providing the quantiles to compute.
- Interpolation : {‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}
In this method, the values and interpolation are passed as parameters. By default, the q value will be 0.5 and interpolation will be Linear. This returns the series or Dataframe determined by the GroupBy object.
Dataframe in use:

dataframe
Example 1: Calculate quantiles by group
Python3
# Importing libraries import pandas as pd # Storing data in dictionary game = { 'Player' : [ 'A' , 'A' , 'A' , 'A' , 'A' , 'A' , 'A' , 'A' , 'B' , 'B' , 'B' , 'B' , 'B' , 'B' , 'B' , 'B' , 'C' , 'C' , 'C' , 'C' , 'C' , 'C' , 'C' , 'C' ], 'wins' : [ 2 , 4 , 4 , 5 , 6 , 9 , 13 , 13 , 15 , 15 , 14 , 13 , 11 , 9 , 9 , 8 , 8 , 16 , 19 , 21 , 14 , 20 , 19 , 18 ] } # Creating data frame df = pd.DataFrame(game) # calculating quantile df.groupby( 'Player' ).quantile( 0.5 ) |
Output:

output
Example 2: Calculate quantiles by group
Python3
# Importing libraries import pandas as pd # Storing data in dictionary game = { 'Player' : [ 'A' , 'A' , 'A' , 'A' , 'A' , 'A' , 'A' , 'A' , 'B' , 'B' , 'B' , 'B' , 'B' , 'B' , 'B' , 'B' , 'C' , 'C' , 'C' , 'C' , 'C' , 'C' , 'C' , 'C' ], 'wins' : [ 2 , 4 , 4 , 5 , 6 , 9 , 13 , 13 , 15 , 15 , 14 , 13 , 11 , 9 , 9 , 8 , 8 , 16 , 19 , 21 , 14 , 20 , 19 , 18 ] } # Creating data frame df = pd.DataFrame(game) # calculating quantile df.groupby( 'Player' ).quantile( 0.9 ) |
Output:

output
Please Login to comment...