Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

How to Calculate Quantiles by Group in Pandas?

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

In this article, how to calculate quantiles by group in Pandas using Python.

There are many methods to calculate the quantile, but pandas provide groupby.quantile() function to find it in a simple few lines of code. This is the Method to use when the desired quantile falls between two points.

Syntax: 

DataFrameGroupBy.quantile(self, q=0.5, interpolation=’linear’)

Parameters:  

  • q : float or array-like, default 0.5 (50% quantile) Values are given between 0 and 1 providing the quantiles to compute.
  • Interpolation : {‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}

In this method, the values and interpolation are passed as parameters. By default, the q value will be 0.5 and interpolation will be Linear. This returns the series or Dataframe determined by the GroupBy object.

Dataframe in use:

dataframe

Example 1: Calculate quantiles by group

Python3




# Importing libraries
import pandas as pd
  
# Storing data in dictionary
game = {'Player': ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A',
                        'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B',
                        'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C'],
        'wins': [2, 4, 4, 5, 6, 9, 13, 13, 15, 15, 14, 13,
                 11, 9, 9, 8, 8, 16, 19, 21, 14, 20, 19, 18]
        }
# Creating data frame
df = pd.DataFrame(game)
  
# calculating quantile
df.groupby('Player').quantile(0.5)


Output:

output

Example 2: Calculate quantiles by group

Python3




# Importing libraries
import pandas as pd
  
# Storing data in dictionary
game = {'Player': ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A',
                        'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B',
                        'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C'],
        'wins': [2, 4, 4, 5, 6, 9, 13, 13, 15, 15, 14, 13,
                 11, 9, 9, 8, 8, 16, 19, 21, 14, 20, 19, 18]
        }
# Creating data frame
df = pd.DataFrame(game)
  
# calculating quantile
df.groupby('Player').quantile(0.9)


Output:

output


My Personal Notes arrow_drop_up
Last Updated : 19 Dec, 2021
Like Article
Save Article
Similar Reads
Related Tutorials