Get the best out of our app
GFG App
Open App
Browser
Continue

# How to avoid overflow in modular multiplication?

Consider below simple method to multiply two numbers.

## C

 `// A Simple solution that causes overflow when ` `// value of (a % mod) * (b % mod) becomes more than` `// maximum value of long long int ` `#define ll long long`   `ll multiply(ll a, ll b, ll mod)` `{` `   ``return` `((a % mod) * (b % mod)) % mod;` `}`

## Java

 `// A Simple solution that causes overflow when ` `// value of (a % mod) * (b % mod) becomes more than` `// maximum value of long int `     `static` `long` `multiply(``long` `a, ``long` `b, ``long` `mod)` `{` `   ``return` `((a % mod) * (b % mod)) % mod;` `}`   `// This code contributed by gauravrajput1 `

## Python

 `# A python program to handle overflow` `# when multiplying two numbers       `   `def` `multiply(a,b,mod):` `    ``return` `((a ``%` `mod) ``*` `(b ``%` `mod)) ``%` `mod;`   `# Code contributed by Gautam goel (gautamgoel962)`

## C#

 `// C# program to implement` `// the above approach` `using` `System;`   `class` `GFG{` `    `    `// A Simple solution that causes overflow when` `// value of (a % mod) * (b % mod) becomes more than` `// maximum value of long int` `static` `long` `multiply(``long` `a, ``long` `b, ``long` `mod)` `{` `   ``return` `((a % mod) * (b % mod)) % mod;` `}` `}`   `// This code is contributed by code_hunt.`

## Javascript

 ``

The above function works fine when multiplication doesn’t result in overflow. But if input numbers are such that the result of multiplication is more than maximum limit.
For example, the above method fails when mod = 1011, a = 9223372036854775807 (largest long long int) and b = 9223372036854775807 (largest long long int). Note that there can be smaller values for which it may fail. There can be many more examples of smaller values. In fact any set of values for which multiplication can cause a value greater than maximum limit.
How to avoid overflow?
We can multiply recursively to overcome the difficulty of overflow. To multiply a*b, first calculate a*b/2 then add it twice. For calculating a*b/2 calculate a*b/4 and so on (similar to log n exponentiation algorithm).

```// To compute (a * b) % mod
multiply(a,  b, mod)
1)  ll res = 0; // Initialize result
2)  a = a % mod.
3)  While (b > 0)
a) If b is odd, then add 'a' to result.
res = (res + a) % mod
b) Multiply 'a' with 2
a = (a * 2) % mod
c) Divide 'b' by 2
b = b/2
4)  Return res ```

Below is the implementation.

## C++

 `// C++ program for modular multiplication without` `// any overflow` `#include` `using` `namespace` `std;`   `typedef` `long` `long` `int` `ll;`   `// To compute (a * b) % mod` `ll mulmod(ll a, ll b, ll mod)` `{` `    ``ll res = 0; ``// Initialize result` `    ``a = a % mod;` `    ``while` `(b > 0)` `    ``{` `        ``// If b is odd, add 'a' to result` `        ``if` `(b % 2 == 1)` `            ``res = (res + a) % mod;`   `        ``// Multiply 'a' with 2` `        ``a = (a * 2) % mod;`   `        ``// Divide b by 2` `        ``b /= 2;` `    ``}`   `    ``// Return result` `    ``return` `res % mod;` `}`   `// Driver program` `int` `main()` `{` `   ``ll a = 9223372036854775807, b = 9223372036854775807;` `   ``cout << mulmod(a, b, 100000000000);` `   ``return` `0;` `}`

## Java

 `// Java program for modular multiplication  ` `// without any overflow `   `class` `GFG ` `{`   `    ``// To compute (a * b) % mod ` `    ``static` `long` `mulmod(``long` `a, ``long` `b, ` `                            ``long` `mod) ` `    ``{` `        ``long` `res = ``0``; ``// Initialize result ` `        ``a = a % mod;` `        ``while` `(b > ``0``)` `        ``{` `            ``// If b is odd, add 'a' to result ` `            ``if` `(b % ``2` `== ``1``) ` `            ``{` `                ``res = (res + a) % mod;` `            ``}`   `            ``// Multiply 'a' with 2 ` `            ``a = (a * ``2``) % mod;`   `            ``// Divide b by 2 ` `            ``b /= ``2``;` `        ``}`   `        ``// Return result ` `        ``return` `res % mod;` `    ``}`   `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args)` `    ``{`   `        ``long` `a = 9223372036854775807L, b = 9223372036854775807L;` `        ``System.out.println(mulmod(a, b, 100000000000L));` `    ``}` `} `   `// This code is contributed by Rajput-JI`

## Python3

 `# Python3 program for modular multiplication ` `# without any overflow`   `# To compute (a * b) % mod` `def` `mulmod(a, b, mod):`   `    ``res ``=` `0``; ``# Initialize result` `    ``a ``=` `a ``%` `mod;` `    ``while` `(b > ``0``):` `    `  `        ``# If b is odd, add 'a' to result` `        ``if` `(b ``%` `2` `=``=` `1``):` `            ``res ``=` `(res ``+` `a) ``%` `mod;`   `        ``# Multiply 'a' with 2` `        ``a ``=` `(a ``*` `2``) ``%` `mod;`   `        ``# Divide b by 2` `        ``b ``/``/``=` `2``;`   `    ``# Return result` `    ``return` `res ``%` `mod;`   `# Driver Code` `a ``=` `9223372036854775807``;` `b ``=` `9223372036854775807``;` `print``(mulmod(a, b, ``100000000000``));`   `# This code is contributed by mits`

## C#

 `// C# program for modular multiplication ` `// without any overflow ` `using` `System;`   `class` `GFG ` `{ `   `// To compute (a * b) % mod ` `static` `long` `mulmod(``long` `a, ``long` `b, ``long` `mod) ` `{ ` `    ``long` `res = 0; ``// Initialize result ` `    ``a = a % mod; ` `    ``while` `(b > 0) ` `    ``{ ` `        ``// If b is odd, add 'a' to result ` `        ``if` `(b % 2 == 1) ` `        ``{ ` `            ``res = (res + a) % mod; ` `        ``} `   `        ``// Multiply 'a' with 2 ` `        ``a = (a * 2) % mod; `   `        ``// Divide b by 2 ` `        ``b /= 2; ` `    ``} `   `    ``// Return result ` `    ``return` `res % mod; ` `} `   `// Driver code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``long` `a = 9223372036854775807L, ` `         ``b = 9223372036854775807L; ` `    ``Console.WriteLine(mulmod(a, b, 100000000000L)); ` `} ` `} `   `// This code is contributed by 29AjayKumar`

## Javascript

 ``

Output:

`84232501249`

Thanks to Utkarsh Trivedi for suggesting above solution.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

My Personal Notes arrow_drop_up
Similar Reads
Related Tutorials