Given a linked list, reverse alternate nodes and append at the end
Given a linked list, reverse alternate nodes and append them to the end of the list. Extra allowed space is O(1)
Examples:
Input: 1->2->3->4->5->6 Output: 1->3->5->6->4->2 Explanation: Two lists are 1->3->5 and 2->4->6, reverse the 2nd list: 6->4->2. Merge the lists Input: 12->14->16->18->20 Output: 12->16->20->18->14 Explanation: Two lists are 12->16->20 and 14->18, reverse the 2nd list: 18->14. Merge the lists
Approach:
- The idea is to maintain two linked lists, one list of all odd positioned nodes and other list of all even positioned nodes .
- Traverse the given linked list which is considered as an odd list or oddly positioned nodes.
- If the node is even node, remove it from the odd list and add it to the front of even node list. Nodes are added at front to keep the reverse order.
- Append the even node list at the end of odd node list.
Illustration:
Implementation:
C++
// C++ program to reverse alternate // nodes of a linked list and append // at the end #include <bits/stdc++.h> using namespace std; /* A linked list node */ class Node { public : int data; Node* next; }; /* Function to reverse all even positioned node and append at the end odd is the head node of given linked list */ void rearrange(Node* odd) { // If linked list has less than 3 // nodes, no change is required if (odd == NULL || odd->next == NULL || odd->next->next == NULL) return ; // even points to the beginning of even list Node* even = odd->next; // Remove the first even node odd->next = odd->next->next; // odd points to next node in odd list odd = odd->next; // Set terminator for even list even->next = NULL; // Traverse the list while (odd->next) { // Store the next node in odd list Node* temp = odd->next->next; // Link the next even node at // the beginning of even list odd->next->next = even; even = odd->next; // Remove the even node from middle odd->next = temp; // Move odd to the next odd node if (temp != NULL) odd = temp; } // Append the even list at the end of odd list odd->next = even; } /* Function to add a node at the beginning of Linked List */ void push(Node** head_ref, int new_data) { Node* new_node = new Node(); new_node->data = new_data; new_node->next = (*head_ref); (*head_ref) = new_node; } /* Function to print nodes in a given linked list */ void printList(Node* node) { while (node != NULL) { cout << node->data << " " ; node = node->next; } } /* Driver code */ int main() { Node* start = NULL; /* The constructed linked list is: 1->2->3->4->5->6->7 */ push(&start, 7); push(&start, 6); push(&start, 5); push(&start, 4); push(&start, 3); push(&start, 2); push(&start, 1); cout << "Linked list before calling rearrange() " ; printList(start); rearrange(start); cout << "\nLinked list after calling rearrange() " ; printList(start); return 0; } // This code is contributed by rathbhupendra |
C
#include <stdio.h> #include <stdlib.h> /* A linked list node */ struct Node { int data; struct Node* next; }; /* Function to reverse all even positioned node and append at the end odd is the head node of given linked list */ void rearrange( struct Node* odd) { // If linked list has less than 3 nodes, // no change is required if (odd == NULL || odd->next == NULL || odd->next->next == NULL) return ; // even points to the beginning of even list struct Node* even = odd->next; // Remove the first even node odd->next = odd->next->next; // odd points to next node in odd list odd = odd->next; // Set terminator for even list even->next = NULL; // Traverse the list while (odd->next) { // Store the next node in odd list struct Node* temp = odd->next->next; // Link the next even node at the // beginning of even list odd->next->next = even; even = odd->next; // Remove the even node from middle odd->next = temp; // Move odd to the next odd node if (temp != NULL) odd = temp; } // Append the even list at the end of odd list odd->next = even; } /* Function to add a node at the beginning of Linked List */ void push( struct Node** head_ref, int new_data) { struct Node* new_node = ( struct Node*) malloc ( sizeof ( struct Node)); new_node->data = new_data; new_node->next = (*head_ref); (*head_ref) = new_node; } /* Function to print nodes in a given linked list */ void printList( struct Node* node) { while (node != NULL) { printf ( "%d " , node->data); node = node->next; } } /* Driver program to test above function */ int main() { struct Node* start = NULL; /* The constructed linked list is: 1->2->3->4->5->6->7 */ push(&start, 7); push(&start, 6); push(&start, 5); push(&start, 4); push(&start, 3); push(&start, 2); push(&start, 1); printf ( "\n Linked list before calling rearrange() " ); printList(start); rearrange(start); printf ( "\n Linked list after calling rearrange() " ); printList(start); return 0; } |
Java
// Java program to reverse alternate // nodes of a linked list and append // at the end class LinkedList { static Node head; static class Node { int data; Node next; Node( int item) { data = item; next = null ; } } /* Function to reverse all even positioned node and append at the end odd is the head node of given linked list */ void rearrange(Node odd) { // If linked list has less than 3 nodes, // no change is required if (odd == null || odd.next == null || odd.next.next == null ) { return ; } // even points to the beginning // of even list Node even = odd.next; // Remove the first even node odd.next = odd.next.next; // odd points to next node in odd list odd = odd.next; // Set terminator for even list even.next = null ; // Traverse the list while (odd.next != null ) { // Store the next node in odd list Node temp = odd.next.next; // Link the next even node at the // beginning of even list odd.next.next = even; even = odd.next; // Remove the even node from middle odd.next = temp; // Move odd to the next odd node if (temp != null ) { odd = temp; } } // Append the even list at the end of odd list odd.next = even; } /* Function to print nodes in a given linked list */ void printList(Node node) { while (node != null ) { System.out.print(node.data + " " ); node = node.next; } } public static void main(String[] args) { LinkedList list = new LinkedList(); list.head = new Node( 1 ); list.head.next = new Node( 2 ); list.head.next.next = new Node( 3 ); list.head.next.next.next = new Node( 4 ); list.head.next.next.next.next = new Node( 5 ); list.head.next.next.next.next.next = new Node( 6 ); list.head.next.next.next.next.next.next = new Node( 7 ); System.out.println( "Linked list before calling rearrange : " ); list.printList(head); System.out.println( "" ); list.rearrange(head); System.out.println( "Linked list after calling rearrange : " ); list.printList(head); } } |
Python3
# Python program to reverse alternate nodes and append # at end # Extra space allowed - O(1) # Node Class class Node: # Constructor to initialize the node object def __init__( self , data): self .data = data self . next = None # Linked list class contains node object class LinkedList: # Constructor to initialize head def __init__( self ): self .head = None # Function to insert a new node at the beginning def push( self , new_data): new_node = Node(new_data) new_node. next = self .head self .head = new_node def printList( self ): temp = self .head while (temp): print (temp.data,end = " " ) temp = temp. next def rearrange( self ): # If linked list has less than 3 nodes, no change # is required odd = self .head if (odd is None or odd. next is None or odd. next . next is None ): return # Even points to the beginning of even list even = odd. next # Remove the first even node odd. next = odd. next . next # Odd points to next node in odd list odd = odd. next # Set terminator for even list even. next = None # Traverse the list while (odd. next ): # Store the next node in odd list temp = odd. next . next # Link the next even node at the beginning # of even list odd. next . next = even even = odd. next # Remove the even node from middle odd. next = temp # Move odd to the next odd node if temp is not None : odd = temp # Append the even list at the end of odd list odd. next = even # Code execution starts here if __name__ = = '__main__' : start = LinkedList() # The constructed linked list is ; # 1->2->3->4->5->6->7 start.push( 7 ) start.push( 6 ) start.push( 5 ) start.push( 4 ) start.push( 3 ) start.push( 2 ) start.push( 1 ) print ( "Linked list before calling rearrange() " ) start.printList() start.rearrange() print ( "\nLinked list after calling rearrange()" ) start.printList() # This code is contributed by NIkhil Kumar Singh(nickzuck_007) |
C#
// C# program to reverse alternate // nodes of a linked list // and append at the end using System; public class LinkedList { Node head; public class Node { public int data; public Node next; public Node( int item) { data = item; next = null ; } } /* Function to reverse all even positioned node and append at the end odd is the head node of given linked list */ void rearrange(Node odd) { // If linked list has less than 3 // nodes, no change is required if (odd == null || odd.next == null || odd.next.next == null ) { return ; } // even points to the beginning of even list Node even = odd.next; // Remove the first even node odd.next = odd.next.next; // odd points to next node in odd list odd = odd.next; // Set terminator for even list even.next = null ; // Traverse the list while (odd.next != null ) { // Store the next node in odd list Node temp = odd.next.next; // Link the next even node at // the beginning of even list odd.next.next = even; even = odd.next; // Remove the even node from middle odd.next = temp; // Move odd to the next odd node if (temp != null ) { odd = temp; } } // Append the even list at the end of odd list odd.next = even; } /* Function to print nodes in a given linked list */ void printList(Node node) { while (node != null ) { Console.Write(node.data + " " ); node = node.next; } } // Driver code public static void Main() { LinkedList list = new LinkedList(); list.head = new Node(1); list.head.next = new Node(2); list.head.next.next = new Node(3); list.head.next.next.next = new Node(4); list.head.next.next.next.next = new Node(5); list.head.next.next.next.next.next = new Node(6); list.head.next.next.next.next.next.next = new Node(7); Console.WriteLine( "Linked list before calling rearrange : " ); list.printList(list.head); Console.WriteLine( "" ); list.rearrange(list.head); Console.WriteLine( "Linked list after calling rearrange : " ); list.printList(list.head); } } /* This code contributed by PrinciRaj1992 */ |
Javascript
<script> // Javascript program to reverse alternate // nodes of a linked list and append // at the end class Node { constructor(item) { this .data = item; this .next = null ; } } let head; // Function to reverse all even positioned // node and append at the end odd is the // head node of given linked list function rearrange(odd) { // If linked list has less than 3 nodes, // no change is required if (odd == null || odd.next == null || odd.next.next == null ) { return ; } // Even points to the beginning // of even list let even = odd.next; // Remove the first even node odd.next = odd.next.next; // Odd points to next node in odd list odd = odd.next; // Set terminator for even list even.next = null ; // Traverse the list while (odd.next != null ) { // Store the next node in odd list let temp = odd.next.next; // Link the next even node at the // beginning of even list odd.next.next = even; even = odd.next; // Remove the even node from middle odd.next = temp; // Move odd to the next odd node if (temp != null ) { odd = temp; } } // Append the even list at the // end of odd list odd.next = even; } // Function to print nodes in a // given linked list function printList(node) { while (node != null ) { document.write(node.data + " " ); node = node.next; } } // Driver code head = new Node(1); head.next = new Node(2); head.next.next = new Node(3); head.next.next.next = new Node(4); head.next.next.next.next = new Node(5); head.next.next.next.next.next = new Node(6); head.next.next.next.next.next.next = new Node(7); document.write( "Linked list before " + "calling rearrange : <br>" ); printList(head); document.write( "<br>" ); rearrange(head); document.write( "Linked list after " + "calling rearrange : <br>" ); printList(head); // This code is contributed by avanitrachhadiya2155 </script> |
Output
Linked list before calling rearrange() 1 2 3 4 5 6 7 Linked list after calling rearrange() 1 3 5 7 6 4 2
Complexity Analysis:
- Time Complexity: O(n).
The above code simply traverses the given linked list. So time complexity is O(n) - Auxiliary Space: O(1).
No extra space is required.
Please Login to comment...