Given level order traversal of a Binary Tree, check if the Tree is a Min-Heap
Given the level order traversal of a Complete Binary Tree, determine whether the Binary Tree is a valid Min-Heap
Examples:
Input : level = [10, 15, 14, 25, 30] Output : True The tree of the given level order traversal is 10 / \ 15 14 / \ 25 30 We see that each parent has a value less than its child, and hence satisfies the min-heap property Input : level = [30, 56, 22, 49, 30, 51, 2, 67] Output : False The tree of the given level order traversal is 30 / \ 56 22 / \ / \ 49 30 51 2 / 67 We observe that at level 0, 30 > 22, and hence min-heap property is not satisfied
We need to check whether each non-leaf node (parent) satisfies the heap property. For this, we check whether each parent (at index i) is smaller than its children (at indices 2*i+1 and 2*i+2, if the parent has two children). If only one child, we only check the parent against index 2*i+1.
C++
// C++ program to check if a given tree is // Binary Heap or not #include <bits/stdc++.h> using namespace std; // Returns true if given level order traversal // is Min Heap. bool isMinHeap( int level[], int n) { // First non leaf node is at index (n/2-1). // Check whether each parent is greater than child for ( int i=(n/2-1) ; i>=0 ; i--) { // Left child will be at index 2*i+1 // Right child will be at index 2*i+2 if (level[i] > level[2 * i + 1]) return false ; if (2*i + 2 < n) { // If parent is greater than right child if (level[i] > level[2 * i + 2]) return false ; } } return true ; } // Driver code int main() { int level[] = {10, 15, 14, 25, 30}; int n = sizeof (level)/ sizeof (level[0]); if (isMinHeap(level, n)) cout << "True" ; else cout << "False" ; return 0; } |
Java
// Java program to check if a given tree is // Binary Heap or not import java.io.*; import java.util.*; public class detheap { // Returns true if given level order traversal // is Min Heap. static boolean isMinHeap( int []level) { int n = level.length - 1 ; // First non leaf node is at index (n/2-1). // Check whether each parent is greater than child for ( int i=(n/ 2 - 1 ) ; i>= 0 ; i--) { // Left child will be at index 2*i+1 // Right child will be at index 2*i+2 if (level[i] > level[ 2 * i + 1 ]) return false ; if ( 2 *i + 2 < n) { // If parent is greater than right child if (level[i] > level[ 2 * i + 2 ]) return false ; } } return true ; } // Driver code public static void main(String[] args) throws IOException { // Level order traversal int [] level = new int []{ 10 , 15 , 14 , 25 , 30 }; if (isMinHeap(level)) System.out.println( "True" ); else System.out.println( "False" ); } } |
Python3
# Python3 program to check if a given # tree is Binary Heap or not # Returns true if given level order # traversal is Min Heap. def isMinHeap(level, n): # First non leaf node is at index # (n/2-1). Check whether each parent # is greater than child for i in range ( int (n / 2 ) - 1 , - 1 , - 1 ): # Left child will be at index 2*i+1 # Right child will be at index 2*i+2 if level[i] > level[ 2 * i + 1 ]: return False if 2 * i + 2 < n: # If parent is greater than right child if level[i] > level[ 2 * i + 2 ]: return False return True # Driver code if __name__ = = '__main__' : level = [ 10 , 15 , 14 , 25 , 30 ] n = len (level) if isMinHeap(level, n): print ( "True" ) else : print ( "False" ) # This code is contributed by PranchalK |
C#
// C# program to check if a given tree // is Binary Heap or not using System; class GFG { // Returns true if given level // order traversal is Min Heap. public static bool isMinHeap( int [] level) { int n = level.Length - 1; // First non leaf node is at // index (n/2-1). Check whether // each parent is greater than child for ( int i = (n / 2 - 1) ; i >= 0 ; i--) { // Left child will be at index 2*i+1 // Right child will be at index 2*i+2 if (level[i] > level[2 * i + 1]) { return false ; } if (2 * i + 2 < n) { // If parent is greater than right child if (level[i] > level[2 * i + 2]) { return false ; } } } return true ; } // Driver code public static void Main( string [] args) { // Level order traversal int [] level = new int []{10, 15, 14, 25, 30}; if (isMinHeap(level)) { Console.WriteLine( "True" ); } else { Console.WriteLine( "False" ); } } } // This code is contributed by Shrikant13 |
PHP
<?php // PHP program to check if a given tree // is Binary Heap or not // Returns true if given level order // traversal is Min Heap. function isMinHeap( $level , $n ) { // First non leaf node is at index // (n/2-1). Check whether each parent // is greater than child for ( $i = ( $n / 2 - 1); $i >= 0; $i --) { // Left child will be at index 2*i+1 // Right child will be at index 2*i+2 if ( $level [ $i ] > $level [2 * $i + 1]) return false; if (2 * $i + 2 < $n ) { // If parent is greater than right child if ( $level [ $i ] > $level [2 * $i + 2]) return false; } } return true; } // Driver code $level = array (10, 15, 14, 25, 30); $n = sizeof( $level ); if (isMinHeap( $level , $n )) echo "True" ; else echo "False" ; // This code is contributed // by Akanksha Rai |
Javascript
<script> // JavaScript program to check if a given tree // is Binary Heap or not // Returns true if given level // order traversal is Min Heap. function isMinHeap(level) { var n = level.length - 1; // First non leaf node is at // index (n/2-1). Check whether // each parent is greater than child for ( var i = (n / 2 - 1) ; i >= 0 ; i--) { // Left child will be at index 2*i+1 // Right child will be at index 2*i+2 if (level[i] > level[2 * i + 1]) { return false ; } if (2 * i + 2 < n) { // If parent is greater than right child if (level[i] > level[2 * i + 2]) { return false ; } } } return true ; } // Driver code // Level order traversal var level = [10, 15, 14, 25, 30]; if (isMinHeap(level)) { document.write( "True" ); } else { document.write( "False" ); } </script> |
True
Time Complexity: O(n)
Auxiliary Space: O(1)
This article is contributed by Deepak Srivatsav. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above
Please Login to comment...