Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Given level order traversal of a Binary Tree, check if the Tree is a Min-Heap

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given the level order traversal of a Complete Binary Tree, determine whether the Binary Tree is a valid Min-Heap

Examples:

Input : level = [10, 15, 14, 25, 30]
Output : True
The tree of the given level order traversal is
                     10
                    /  \
                   15   14
                  /  \
                 25   30
We see that each parent has a value less than
its child, and hence satisfies the min-heap 
property
 
Input : level = [30, 56, 22, 49, 30, 51, 2, 67]
Output : False
The tree of the given level order traversal is
                         30
                      /      \
                    56         22
                 /      \     /   \
               49        30  51    2
              /
             67
We observe that at level 0, 30 > 22, and hence
min-heap property is not satisfied

We need to check whether each non-leaf node (parent) satisfies the heap property. For this, we check whether each parent (at index i) is smaller than its children (at indices 2*i+1 and 2*i+2, if the parent has two children). If only one child, we only check the parent against index 2*i+1.

C++




// C++ program to check if a given tree is
// Binary Heap or not
#include <bits/stdc++.h>
using namespace std;
 
// Returns true if given level order traversal
// is Min Heap.
bool isMinHeap(int level[], int n)
{
    // First non leaf node is at index (n/2-1).
    // Check whether each parent is greater than child
    for (int i=(n/2-1) ; i>=0 ; i--)
    {
        // Left child will be at index 2*i+1
        // Right child will be at index 2*i+2
        if (level[i] > level[2 * i + 1])
            return false;
 
        if (2*i + 2 < n)
        {
            // If parent is greater than right child
            if (level[i] > level[2 * i + 2])
                return false;
        }
    }
    return true;
}
 
// Driver code
int main()
{
    int level[] = {10, 15, 14, 25, 30};
    int n = sizeof(level)/sizeof(level[0]);
    if  (isMinHeap(level, n))
        cout << "True";
    else
        cout << "False";
    return 0;
}


Java




// Java program to check if a given tree is
// Binary Heap or not
import java.io.*;
import java.util.*;
 
public class detheap
{
    // Returns true if given level order traversal
    // is Min Heap.
    static boolean isMinHeap(int []level)
    {
        int n = level.length - 1;
 
        // First non leaf node is at index (n/2-1).
        // Check whether each parent is greater than child
        for (int i=(n/2-1) ; i>=0 ; i--)
        {
            // Left child will be at index 2*i+1
            // Right child will be at index 2*i+2
            if (level[i] > level[2 * i + 1])
                return false;
 
            if (2*i + 2 < n)
            {
                // If parent is greater than right child
                if (level[i] > level[2 * i + 2])
                   return false;
            }
        }
        return true;
    }
 
    // Driver code
    public static void main(String[] args)
                              throws IOException
    {
        // Level order traversal
        int[] level = new int[]{10, 15, 14, 25, 30};
 
        if  (isMinHeap(level))
            System.out.println("True");
        else
            System.out.println("False");
    }
}


Python3




# Python3 program to check if a given
# tree is Binary Heap or not
 
# Returns true if given level order
# traversal is Min Heap.
def isMinHeap(level, n):
     
    # First non leaf node is at index
    # (n/2-1). Check whether each parent
    # is greater than child
    for i in range(int(n / 2) - 1, -1, -1):
         
        # Left child will be at index 2*i+1
        # Right child will be at index 2*i+2
        if level[i] > level[2 * i + 1]:
            return False
 
        if 2 * i + 2 < n:
             
            # If parent is greater than right child
            if level[i] > level[2 * i + 2]:
                return False
    return True
 
# Driver code
if __name__ == '__main__':
    level = [10, 15, 14, 25, 30]
    n = len(level)
    if isMinHeap(level, n):
        print("True")
    else:
        print("False")
 
# This code is contributed by PranchalK


C#




// C# program to check if a given tree
// is Binary Heap or not
using System;
 
class GFG
{
// Returns true if given level
// order traversal is Min Heap.
public static bool isMinHeap(int[] level)
{
    int n = level.Length - 1;
 
    // First non leaf node is at
    // index (n/2-1). Check whether
    // each parent is greater than child
    for (int i = (n / 2 - 1) ; i >= 0 ; i--)
    {
        // Left child will be at index 2*i+1
        // Right child will be at index 2*i+2
        if (level[i] > level[2 * i + 1])
        {
            return false;
        }
 
        if (2 * i + 2 < n)
        {
            // If parent is greater than right child
            if (level[i] > level[2 * i + 2])
            {
            return false;
            }
        }
    }
    return true;
}
 
// Driver code
public static void Main(string[] args)
{
    // Level order traversal
    int[] level = new int[]{10, 15, 14, 25, 30};
 
    if (isMinHeap(level))
    {
        Console.WriteLine("True");
    }
    else
    {
        Console.WriteLine("False");
    }
}
}
 
// This code is contributed by Shrikant13


PHP




<?php
// PHP program to check if a given tree
// is Binary Heap or not
 
// Returns true if given level order
// traversal is Min Heap.
function isMinHeap($level, $n)
{
    // First non leaf node is at index
    // (n/2-1). Check whether each parent
    // is greater than child
    for ($i = ($n / 2 - 1); $i >= 0; $i--)
    {
        // Left child will be at index 2*i+1
        // Right child will be at index 2*i+2
        if ($level[$i] > $level[2 * $i + 1])
            return false;
 
        if (2 * $i + 2 < $n)
        {
            // If parent is greater than right child
            if ($level[$i] > $level[2 * $i + 2])
                return false;
        }
    }
    return true;
}
 
// Driver code
$level = array(10, 15, 14, 25, 30);
$n = sizeof($level);
if (isMinHeap($level, $n))
    echo "True";
else
    echo "False";
 
// This code is contributed
// by Akanksha Rai


Javascript




<script>
 
// JavaScript program to check if a given tree
// is Binary Heap or not
 
// Returns true if given level
// order traversal is Min Heap.
function isMinHeap(level)
{
    var n = level.length - 1;
 
    // First non leaf node is at
    // index (n/2-1). Check whether
    // each parent is greater than child
    for(var i = (n / 2 - 1) ; i >= 0 ; i--)
    {
        // Left child will be at index 2*i+1
        // Right child will be at index 2*i+2
        if (level[i] > level[2 * i + 1])
        {
            return false;
        }
 
        if (2 * i + 2 < n)
        {
            // If parent is greater than right child
            if (level[i] > level[2 * i + 2])
            {
            return false;
            }
        }
    }
    return true;
}
 
// Driver code
// Level order traversal
var level = [10, 15, 14, 25, 30];
if (isMinHeap(level))
{
    document.write("True");
}
else
{
    document.write("False");
}
 
 
</script>


Output

True

Time Complexity: O(n)
Auxiliary Space: O(1)

This article is contributed by Deepak Srivatsav. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above


My Personal Notes arrow_drop_up
Last Updated : 26 Dec, 2022
Like Article
Save Article
Similar Reads
Related Tutorials