Given a string, print all possible palindromic partitions
Given a string, find all possible palindromic partitions of given string.
Example:
Note that this problem is different from Palindrome Partitioning Problem, there the task was to find the partitioning with minimum cuts in input string. Here we need to print all possible partitions.
The idea is to go through every substring starting from first character, check if it is palindrome. If yes, then add the substring to solution and recur for remaining part. Below is complete algorithm.
Below is the implementation of above idea.
n i t i n n iti n nitin
Time complexity: O(n*2n)
Auxiliary Space: O(n2)
Approach 2: Expand around every palindrome
The idea is to split the string into all palindromes of length 1 that is convert the string to a list of its characters (but as string data type) and then expand the smaller palindromes to bigger palindromes by checking if its left and right (reversed) are equal or not if they are equal then merge them and solve for new list recursively. Also if two adjacent strings of this list are equal (when one of them is reversed), merging them would also give a palindrome so merge them and solve recursively.
C++
#include <bits/stdc++.h> using namespace std; class GFG { public : void solve(vector<string> arr) { res.insert(arr); // add current partitioning to result if (arr.size() <= 1) { // Base case when there is nothing to merge return ; } for ( int i = 1; i < arr.size(); i++) { if (arr[i-1] == string(arr[i].rbegin(), arr[i].rend())) { // When two adjacent such that one is reverse of another vector<string> brr(arr.begin(), arr.begin()+i-1); brr.push_back(arr[i-1]+arr[i]); brr.insert(brr.end(), arr.begin()+i+1, arr.end()); solve(brr); } if (i+1 < arr.size() && arr[i-1] == string(arr[i+1].rbegin(), arr[i+1].rend())) { // All are individually palindrome, // when one left and one right of i are reverse of each other then we can merge // the three of them to form a new partitioning way vector<string> brr(arr.begin(), arr.begin()+i-1); brr.push_back(arr[i-1]+arr[i]+arr[i+1]); brr.insert(brr.end(), arr.begin()+i+2, arr.end()); solve(brr); } } } vector<vector<string>> getGray(string S) { res.clear(); // result is a set of tuples to avoid same partition multiple times vector<string> s; for ( char c : S) { s.emplace_back(1, c); } solve(s); // Call recursive function to solve for S vector<vector<string>> res_v(res.begin(), res.end()); sort(res_v.begin(), res_v.end()); return res_v; } private : set<vector<string>> res; // set of partition vectors to avoid duplicates }; int main() { GFG ob; vector<vector<string>> allPart = ob.getGray( "geeks" ); for ( auto & v : allPart) { for ( auto & s : v) { cout << s << " " ; } cout << "\n" ; } return 0; } |
Java
// Java equivalent of the Python code above import java.util.*; class GFG { // Method to solve the problem recursively public void solve(ArrayList<String> arr, HashSet<ArrayList<String> > res) { // Add current partitioning to the result set res.add( new ArrayList<String>(arr)); // Base case when there is nothing to merge if (arr.size() <= 1 ) { return ; } // Check for all possible merges for ( int i = 1 ; i < arr.size(); i++) { // When two adjacent strings are such that one // is reverse of another if (arr.get(i - 1 ).equals( new StringBuilder(arr.get(i)) .reverse() .toString())) { ArrayList<String> brr = new ArrayList<String>(); brr.addAll(arr.subList( 0 , i - 1 )); brr.add(arr.get(i - 1 ) + arr.get(i)); brr.addAll(arr.subList(i + 1 , arr.size())); solve(brr, res); } // When one string left and one right of i are // reverse of each other then we can merge the // three of them to form a new partitioning way if (i + 1 < arr.size() && arr.get(i - 1 ).equals( new StringBuilder(arr.get(i + 1 )) .reverse() .toString())) { ArrayList<String> brr = new ArrayList<String>(); brr.addAll(arr.subList( 0 , i - 1 )); brr.add(arr.get(i - 1 ) + arr.get(i) + arr.get(i + 1 )); brr.addAll(arr.subList(i + 2 , arr.size())); solve(brr, res); } } } // Method to get all valid partitionings of a given // string public ArrayList<ArrayList<String> > getGray(String S) { HashSet<ArrayList<String> > res = new HashSet<ArrayList<String> >(); ArrayList<String> arr = new ArrayList<String>( Arrays.asList(S.split( "" ))); solve(arr, res); ArrayList<ArrayList<String> > sortedRes = new ArrayList<ArrayList<String> >(res); Collections.sort( sortedRes, new Comparator<ArrayList<String> >() { @Override public int compare(ArrayList<String> a, ArrayList<String> b) { for ( int i = 0 ; i < Math.min(a.size(), b.size()); i++) { int cmp = a.get(i).compareTo(b.get(i)); if (cmp != 0 ) { return cmp; } } return Integer.compare(a.size(), b.size()); } }); return sortedRes; } // Driver code public static void main(String[] args) { // Create object of GFG class GFG ob = new GFG(); // Get all valid partitionings of the string "geeks" ArrayList<ArrayList<String> > allPart = ob.getGray( "geeks" ); // Print all partitionings for (ArrayList<String> partition : allPart) { for (String str : partition) { System.out.print(str + " " ); } System.out.println(); } } } |
Python3
class GFG: def solve( self , arr): self .res.add( tuple (arr)) # add current partitioning to result if len (arr)< = 1 : # Base case when there is nothing to merge return for i in range ( 1 , len (arr)): if arr[i - 1 ] = = arr[i][:: - 1 ]: # When two adjacent such that one is reverse of another brr = arr[:i - 1 ] + [arr[i - 1 ] + arr[i]] + arr[i + 1 :] self .solve(brr) if i + 1 < len (arr) and arr[i - 1 ] = = arr[i + 1 ][:: - 1 ]: # All are individually palindrome, # when one left and one right of i are reverse of each other then we can merge # the three of them to form a new partitioning way brr = arr[:i - 1 ] + [arr[i - 1 ] + arr[i] + arr[i + 1 ]] + arr[i + 2 :] self .solve(brr) def getGray( self , S): self .res = set () # result is a set of tuples to avoid same partition multiple times self .solve( list (S)) # Call recursive function to solve for S return sorted ( list ( self .res)) # Driver Code if __name__ = = '__main__' : ob = GFG() allPart = ob.getGray( "geeks" ) for i in range ( len (allPart)): for j in range ( len (allPart[i])): print (allPart[i][j], end = " " ) print () # This code is contributed by Gautam Wadhwani |
C#
// C# Program for the above approach using System; using System.Collections.Generic; using System.Linq; class GFG { // Method to solve the problem recursively public void Solve(List< string > arr, HashSet<List< string >> res) { // Add current partitioning to the result set res.Add( new List< string >(arr)); // Base case when there is nothing to merge if (arr.Count <= 1) { return ; } // Check for all possible merges for ( int i = 1; i < arr.Count; i++) { // When two adjacent strings are such that one // is reverse of another if (arr[i - 1] == new string (arr[i].Reverse().ToArray())) { List< string > brr = new List< string >(); brr.AddRange(arr.GetRange(0, i - 1)); brr.Add(arr[i - 1] + arr[i]); brr.AddRange(arr.GetRange(i + 1, arr.Count - i - 1)); Solve(brr, res); } // When one string left and one right of i are // reverse of each other then we can merge the // three of them to form a new partitioning way if (i + 1 < arr.Count && arr[i - 1] == new string (arr[i + 1].Reverse().ToArray())) { List< string > brr = new List< string >(); brr.AddRange(arr.GetRange(0, i - 1)); brr.Add(arr[i - 1] + arr[i] + arr[i + 1]); brr.AddRange(arr.GetRange(i + 2, arr.Count - i - 2)); Solve(brr, res); } } } // Method to get all valid partitionings of a given // string public List<List< string >> GetGray( string S) { HashSet<List< string >> res = new HashSet<List< string >>(); List< string > arr = S.Select(c => c.ToString()).ToList(); Solve(arr, res); List<List< string >> sortedRes = new List<List< string >>(res); sortedRes.Sort((a, b) => { for ( int i = 0; i < Math.Min(a.Count, b.Count); i++) { int cmp = a[i].CompareTo(b[i]); if (cmp != 0) { return cmp; } } return a.Count.CompareTo(b.Count); }); return sortedRes; } // Driver code public static void Main( string [] args) { // Create object of GFG class GFG ob = new GFG(); // Get all valid partitionings of the string "geeks" List<List< string >> allPart = ob.GetGray( "geeks" ); // Print all partitionings foreach (List< string > partition in allPart) { foreach ( string str in partition) { Console.Write(str + " " ); } Console.WriteLine(); } } } // This code is contributed by codebraxnzt |
Javascript
// Javascript equivalent class GFG { solve(arr) { this .res.add(Array.from(arr)) // add current partitioning to result if (arr.length <= 1) { // Base case when there is nothing to merge return ; } for (let i = 1; i < arr.length; i++) { if (arr[i - 1] == arr[i].split( "" ).reverse().join( "" )) { // When two adjacent such that one is reverse of another let brr = arr.slice(0, i-1).concat([arr[i-1]+arr[i]]).concat(arr.slice(i+1)); this .solve(brr); } if (i+1<arr.length && arr[i-1] == arr[i+1].split( "" ).reverse().join( "" )) { // All are individually palindrome, // when one left and one right of i are reverse of each other then we can merge // the three of them to form a new partitioning way let brr = arr.slice(0, i-1).concat([arr[i-1]+arr[i]+arr[i+1]]).concat(arr.slice(i+2)); this .solve(brr); } } } getGray(S) { this .res = new Set(); // result is a set of tuples to avoid same partition multiple times this .solve(S.split( "" )); // Call recursive function to solve for S let result = Array.from( this .res); return result.sort(); } } // Driver Code let ob = new GFG(); let allPart = ob.getGray( "geeks" ); for (let i=0;i<allPart.length;i++) { temp= "" ; for (let j=0;j<allPart[i].length;j++) { temp = temp + allPart[i][j] + " " ; } console.log(temp); } |
g e e k s g ee k s
Time complexity: O(n*2n)
Auxiliary Space: O(n2)
This article is contributed by Ekta Goel. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...