Generate permutation of 1 to N with sum of min of prefix for each element as Y
Given two integers N, Y, generate a permutation of length N such that sum of all prefix minimum of that permutation is Y.
Example:
Input: N = 5, Y = 10
Output: 5 2 1 4 3
Explanation: Array of prefix minimum for [5, 2, 1, 4, 3] is [5, 2, 1, 1, 1]. Sum of this array of prefix minimum is 10 (= Y).Input: N = 5, Y = 5
Output: 1 2 3 4 5
Explanation: Array of prefix minimum for [1, 2, 3, 4, 5] is [1, 1, 1, 1, 1]. Sum of this array of prefix minimum is 5 (= Y).
Approach: The approach to solve this problem is based on below idea:
Suppose the remaining array to be created at some point of time be len and the remaining sum to be rem.
Greedily choose a value for this index by the given method below:
- let’s take Z value at this index, then we should have at least (Z + len – 1) = rem (By taking 1 at remaining indices).
- So, we get Z = (rem + 1 – len). Now, this value might be greater than len but we can’t take it. So, we will choose min(Z, len).
Follow the below steps to solve this problem:
- Now, a prefix minimum array for the required permutation is already built from the above greedy method.
- It might have duplicates as well. So, to remove that iterate over this array in reverse order and whenever arr[i] = arr[i-1], then put the smallest element not present at any index at ith index.
- In this way, ensured that the sum of prefix minimum should be Y and the array created should be permutation as well.
- Print the final array
Below is the implementation of the above approach:
C++
// C++ program for Generate permutation // of length N such that sum of all prefix // minimum of that permutation is Y. #include <iostream> #include <set> #include <vector> using namespace std; // Find the value greedily for the // current index as discussed in approach int findValue( long long N, long long Y) { return min(N, Y + 1 - N); } // Function to generate the permutation void generatePermutation( long long N, long long Y) { // Store the prefix minimum array first // then we will convert it to permutation vector< int > ans(N); // If Y should belong to [N, (N*(N + 1)/2)], // otherwise we will print -1; if (Y < N || (2 * Y) > (N * (N + 1))) { cout << -1 << endl; return ; } // Remaining elements to be taken set< int > s; for ( int i = 1; i <= N; i++) { s.insert(i); } // Generate prefix minimum array for ( int i = 0; i < N; i++) { // Length remaining int len = N - i; int val = findValue(len, Y); ans[i] = val; Y -= val; if (s.find(val) != s.end()) s.erase(val); } // Remove duplicates to make array permutation // So, iterate in reverse order for ( int i = N - 1; i > 0; i--) { if (ans[i] == ans[i - 1]) { // Find minimum element not taken // in the permutation ans[i] = *s.begin(); s.erase(ans[i]); } } // Print the permutation for ( auto i : ans) { cout << i << " " ; } cout << endl; } // Driver Code int main() { long long N = 5, Y = 10; generatePermutation(N, Y); return 0; } |
Java
// Java program for Generate permutation // of length N such that sum of all prefix // minimum of that permutation is Y. import java.util.*; class GFG { // Find the value greedily for the // current index as discussed in approach static int findValue( int N, int Y) { return Math.min(N, Y + 1 - N); } // Function to generate the permutation static void generatePermutation( int N, int Y) { // Store the prefix minimum array first // then we will convert it to permutation int [] ans = new int [N]; // If Y should belong to [N, (N*(N + 1)/2)], // otherwise we will print -1; if (Y < N || ( 2 * Y) > (N * (N + 1 ))) { System.out.println(- 1 ); return ; } // Remaining elements to be taken Set<Integer> s = new HashSet<Integer>(); for ( int i = 1 ; i <= N; i++) { s.add(i); } // Generate prefix minimum array for ( int i = 0 ; i < N; i++) { // Length remaining int len = N - i; int val = findValue(len, Y); ans[i] = val; Y -= val; if (s.contains(val)) s.remove(val); } // Remove duplicates to make array permutation // So, iterate in reverse order for ( int i = N - 1 ; i > 0 ; i--) { if (ans[i] == ans[i - 1 ]) { // Find minimum element not taken // in the permutation ans[i] = s.stream().findFirst().get(); s.remove(ans[i]); } } // Print the permutation for ( int i = 0 ; i < N; i++) { System.out.print(ans[i] + " " ); } } // Driver Code public static void main (String[] args) { int N = 5 , Y = 10 ; generatePermutation(N, Y); } } // This code is contributed by hrithikgarg03188. |
Python3
# python3 program for Generate permutation # of length N such that sum of all prefix # minimum of that permutation is Y. # Find the value greedily for the # current index as discussed in approach def findValue(N, Y): return min (N, Y + 1 - N) # Function to generate the permutation def generatePermutation(N, Y): # Store the prefix minimum array first # then we will convert it to permutation ans = [ 0 for _ in range (N)] # If Y should belong to [N, (N*(N + 1)/2)], # otherwise we will print -1; if (Y < N or ( 2 * Y) > (N * (N + 1 ))): print ( - 1 ) return # Remaining elements to be taken s = set () for i in range ( 1 , N + 1 ): s.add(i) # Generate prefix minimum array for i in range ( 0 , N): # Length remaining len = N - i val = findValue( len , Y) ans[i] = val Y - = val if (val in s): s.remove(val) # Remove duplicates to make array permutation # So, iterate in reverse order for i in range (N - 1 , - 1 , - 1 ): if (ans[i] = = ans[i - 1 ]): # Find minimum element not taken # in the permutation ans[i] = list (s)[ 0 ] s.remove(ans[i]) # Print the permutation for i in ans: print (i, end = " " ) print () # Driver Code if __name__ = = "__main__" : N, Y = 5 , 10 generatePermutation(N, Y) # This code is contributed by rakeshsahni |
C#
// C# implementation of above approach using System; using System.Collections.Generic; using System.Linq; class GFG{ // Find the value greedily for the // current index as discussed in approach static int findValue( int N, int Y) { return Math.Min(N, Y + 1 - N); } // Function to generate the permutation static void generatePermutation( int N, int Y) { // Store the prefix minimum array first // then we will convert it to permutation int [] ans = new int [N]; // If Y should belong to [N, (N*(N + 1)/2)], // otherwise we will print -1; if (Y < N || (2 * Y) > (N * (N + 1))) { Console.Write(-1); return ; } // Remaining elements to be taken HashSet< int > s = new HashSet< int >(); for ( int i = 1; i <= N; i++) { s.Add(i); } // Generate prefix minimum array for ( int i = 0; i < N; i++) { // Length remaining int len = N - i; int val = findValue(len, Y); ans[i] = val; Y -= val; if (s.Contains(val)) s.Remove(val); } // Remove duplicates to make array permutation // So, iterate in reverse order for ( int i = N - 1; i > 0; i--) { if (ans[i] == ans[i - 1]) { // Find minimum element not taken // in the permutation ans[i] = s.First(); s.Remove(ans[i]); } } // Print the permutation for ( int i = 0; i < N; i++) { Console.Write(ans[i] + " " ); } } // Driver Code static public void Main (){ int N = 5, Y = 10; generatePermutation(N, Y); } } // This code is contributed by code_hunt. |
Javascript
<script> // JavaScript program for Generate permutation // of length N such that sum of all prefix // minimum of that permutation is Y. // Find the value greedily for the // current index as discussed in approach function findValue(N, Y) { return Math.min(N, Y + 1 - N); } // Function to generate the permutation function generatePermutation(N, Y) { // Store the prefix minimum array first // then we will convert it to permutation let ans = new Array(N); // If Y should belong to [N, (N*(N + 1)/2)], // otherwise we will print -1; if (Y < N || (2 * Y) > (N * (N + 1))) { document.write(-1, "</br>" ); return ; } // Remaining elements to be taken let s = new Set(); for (let i = 1; i <= N; i++) { s.add(i); } // Generate prefix minimum array for (let i = 0; i <N; i++) { // Length remaining let len = N - i; let val = findValue(len, Y); ans[i] = val; Y -= val; if (s.has(val)) s. delete (val); } // Remove duplicates to make array permutation // So, iterate in reverse order for (let i = N - 1; i > 0; i--) { if (ans[i] == ans[i - 1]) { // Find minimum element not taken // in the permutation ans[i] = Array.from(s)[0] s. delete (ans[i]); } } // Print the permutation for (let i of ans) { document.write(i, " " ); } document.write( "</N;>" ); } // Driver Code let N = 5, Y = 10; generatePermutation(N, Y); // This code is contributed by shinjanpatra </script> |
5 2 1 4 3
Time Complexity: O(N * log N).
If we are using a set, we can make it O(N) by using two pointer technique.
Auxiliary Space: O(N)
Please Login to comment...