GCD of all subarrays of size K
Given an array, arr[] of size N, the task is to print the GCD of all subarrays of size K.
Examples:
Input: arr[] = {2, 4, 3, 9, 14, 20, 25, 17}, K = 2
Output: 2 1 3 1 2 5 1
Explanation:
gcd(2, 4}) = 2
gcd(4, 3) = 1
gcd(3, 9) = 3
gcd(9, 14) = 1
gcd(14, 20) = 2
gcd(20, 25) = 5
gcd(25, 17) = 1
Therefore, the required output is {2, 1, 3, 1, 2, 5, 1}Input: arr[] = {2, 4, 8, 24, 14, 20, 25, 35, 7, 49, 7}, K = 3
Output: 2 4 2 2 1 5 1 7 7
Approach: The idea is to generate all subarrays of size K and print the GCD of each subarray. To efficiently compute the GCD of each subarray, the idea is to use the following property of GCD.
GCD(A1, A2, A3, …, AK) = GCD(A1, GCD(A2, A3, A4, …., AK))
Follow the steps below to solve the problem:
- Initialize a variable, say gcd, to store the GCD of the current subarray.
- Generate K-length subarrays from the given array.
- Applying the above property of GCD, compute the GCD of each subarray, and print the obtained result.
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to print the gcd // of each subarray of length K void printSub( int arr[], int N, int K) { for ( int i = 0; i <= N - K; i++) { // Store GCD of subarray int gcd = arr[i]; for ( int j = i + 1; j < i + K; j++) { // Update GCD of subarray gcd = __gcd(gcd, arr[j]); } // Print GCD of subarray cout << gcd << " " ; } } // Driver Code int main() { int arr[] = { 2, 4, 3, 9, 14, 20, 25, 17 }; int K = 2; int N = sizeof (arr) / sizeof (arr[0]); printSub(arr, N, K); } |
Java
// Java program to implement // the above approach class GFG{ static int __gcd( int a, int b) { if (b == 0 ) return a; return __gcd(b, a % b); } // Function to print the gcd // of each subarray of length K static void printSub( int arr[], int N, int K) { for ( int i = 0 ; i <= N - K; i++) { // Store GCD of subarray int gcd = arr[i]; for ( int j = i + 1 ; j < i + K; j++) { // Update GCD of subarray gcd = __gcd(gcd, arr[j]); } // Print GCD of subarray System.out.print(gcd + " " ); } } // Driver Code public static void main(String[] args) { int arr[] = { 2 , 4 , 3 , 9 , 14 , 20 , 25 , 17 }; int K = 2 ; int N = arr.length; printSub(arr, N, K); } } // This code is contributed by Chitranayal |
Python3
# Python3 program to implement # the above approach from math import gcd # Function to print the gcd # of each subarray of length K def printSub(arr, N, K): for i in range (N - K + 1 ): # Store GCD of subarray g = arr[i] for j in range (i + 1 , i + K): # Update GCD of subarray g = gcd(g, arr[j]) # Print GCD of subarray print (g, end = " " ) # Driver Code if __name__ = = '__main__' : arr = [ 2 , 4 , 3 , 9 , 14 , 20 , 25 , 17 ] K = 2 N = len (arr) printSub(arr, N, K) # This code is contributed by mohit kumar 29 |
C#
// C# program to implement // the above approach using System; class GFG{ static int __gcd( int a, int b) { if (b == 0) return a; return __gcd(b, a % b); } // Function to print the gcd // of each subarray of length K static void printSub( int []arr, int N, int K) { for ( int i = 0; i <= N - K; i++) { // Store GCD of subarray int gcd = arr[i]; for ( int j = i + 1; j < i + K; j++) { // Update GCD of subarray gcd = __gcd(gcd, arr[j]); } // Print GCD of subarray Console.Write(gcd + " " ); } } // Driver Code public static void Main(String[] args) { int []arr = {2, 4, 3, 9, 14, 20, 25, 17}; int K = 2; int N = arr.Length; printSub(arr, N, K); } } // This code is contributed by Princi Singh |
Javascript
<script> // Javascript program to implement // the above approach function __gcd(a, b) { if (b == 0) return a; return __gcd(b, a % b); } // Function to print the gcd // of each subarray of length K function prletSub(arr, N, K) { for (let i = 0; i <= N - K; i++) { // Store GCD of subarray let gcd = arr[i]; for (let j = i + 1; j < i + K; j++) { // Update GCD of subarray gcd = __gcd(gcd, arr[j]); } // Print GCD of subarray document.write(gcd + " " ); } } // Driver Code let arr = [2, 4, 3, 9, 14, 20, 25, 17]; let K = 2; let N = arr.length; prletSub(arr, N, K); // This code is contributed by avijitmondal1998. </script> |
2 1 3 1 2 5 1
Time Complexity: O((N – K + 1) * K)
Auxiliary Space: O(1)
Please Login to comment...