Given three integers x, y, z, the task is to compute the value of GCD(LCM(x,y), LCM(x,z)).
Where, GCD = Greatest Common Divisor, LCM = Least Common Multiple
Examples:
Input: x = 15, y = 20, z = 100
Output: 60
Input: x = 30, y = 40, z = 400
Output: 120
One way to solve it is by finding GCD(x, y), and using it we find LCM(x, y). Similarly, we find LCM(x, z) and then we finally find the GCD of the obtained results.
An efficient approach can be done by the fact that the following version of distributivity holds true:
GCD(LCM (x, y), LCM (x, z)) = LCM(x, GCD(y, z))
For example, GCD(LCM(3, 4), LCM(3, 10)) = LCM(3, GCD(4, 10)) = LCM(3, 2) = 6
This reduces our work to compute the given problem statement.
C++
#include<bits/stdc++.h>
using namespace std;
int findValue( int x, int y, int z)
{
int g = __gcd(y, z);
return (x*g)/__gcd(x, g);
}
int main()
{
int x = 30, y = 40, z = 400;
cout << findValue(x, y, z);
return 0;
}
|
Java
class GFG {
static int __gcd( int a, int b)
{
if (b == 0 )
return a;
return __gcd(b, a % b);
}
static int findValue( int x, int y, int z)
{
int g = __gcd(y, z);
return (x * g) / __gcd(x, g);
}
public static void main(String[] args)
{
int x = 30 , y = 40 , z = 400 ;
System.out.print(findValue(x, y, z));
}
}
|
Python3
def __gcd(a, b):
if (b = = 0 ):
return a
return __gcd(b, a % b)
def findValue(x, y, z):
g = __gcd(y, z)
return (x * g) / __gcd(x, g)
x = 30
y = 40
z = 400
print ( "%d" % findValue(x, y, z))
|
C#
using System;
class GFG {
static int __gcd( int a, int b)
{
if (b == 0)
return a;
return __gcd(b, a % b);
}
static int findValue( int x, int y, int z)
{
int g = __gcd(y, z);
return (x*g) / __gcd(x, g);
}
public static void Main ()
{
int x = 30, y = 40, z = 400;
Console.Write(findValue(x, y, z));
}
}
|
PHP
<?php
function __gcd( $a , $b )
{
if ( $b == 0)
return $a ;
return __gcd( $b , $a % $b );
}
function findValue( $x , $y , $z )
{
$g = __gcd( $y , $z );
return ( $x * $g )/__gcd( $x , $g );
}
$x = 30;
$y = 40;
$z = 400;
echo findValue( $x , $y , $z );
?>
|
Javascript
<script>
function __gcd( a, b)
{
if (b == 0)
return a;
return __gcd(b, a % b);
}
function findValue(x, y, z)
{
let g = __gcd(y, z);
return (x*g)/__gcd(x, g);
}
let x = 30, y = 40, z = 400;
document.write( findValue(x, y, z));
</script>
|
Time Complexity: O(log(min(a,b))
Auxiliary Space: O(log(min(a,b))
As a side note, vice versa is also true, i.e., gcd(x, lcm(y, z)) = lcm(gcd(x, y), gcd(x, z)
Reference:
https://en.wikipedia.org/wiki/Distributive_property#Other_examples
This article is contributed by Aarti_Rathi and Mazhar Imam Khan. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...