Skip to content
Related Articles
Open in App
Not now

Related Articles

GATE | Gate IT 2007 | Question 43

Improve Article
Save Article
  • Difficulty Level : Basic
  • Last Updated : 28 Jun, 2021
Improve Article
Save Article

An error correcting code has the following code words: 
00000000, 00001111, 01010101, 10101010, 11110000.
What is the maximum number of bit errors that can be corrected ?
 

(A)

0
 

(B)

1
 

(C)

2
 

(D)

3
 


Answer: (B)

Explanation:

While transmitting the data through the channel, noise may be added to the data and thus, may cause errors in the data. Hamming code errors CANNOT be DETECTED if one code converts into another. 

detection possible up to ( hamming distance – 1) = 4 – 1 = 3 bits

correction possible up to { [ ( hamming distance – 1) / 2 ]}

                                     = \left \lfloor\frac{Hamming \ Distance-1}{2} \right \rfloor

                                     = \left \lfloor\frac{3}{2} \right \rfloor

                                     =  \left \lfloor\ 1.5 \right \rfloor

                                     = 1 bit

Therefore, option B is the correct answer. 


Quiz of this Question
Please comment below if you find anything wrong in the above post

My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!