GATE | Gate IT 2005 | Question 13
A function f defined on stacks of integers satisfies the following properties. f(∅) = 0 and f (push (S, i)) = max (f(S), 0) + i for all stacks S and integers i.
If a stack S contains the integers 2, -3, 2, -1, 2 in order from bottom to top, what is f(S)?
(A) 6
(B) 4
(C) 3
(D) 2
Answer: (C)
Explanation:
f(S) = 0, max(f(S), 0) = 0, i = 2
f(S)new = max(f(S), 0) + i = 0 + 2 = 2
f(S) = 2, max(f(S), 0) = 2, i = -3
f(S)new = max(f(S), 0) + i = 2 – 3 = -1
f(S) = -1, max(f(S), 0) = 0, i = 2
f(S)new = max(f(S), 0) + i = 0 + 2 = 2
f(S) = 2, max(f(S), 0) = 2, i = -1
f(S)new = max(f(S), 0) + i = 2 – 1 = 1
f(S) = 1, max(f(S), 0) = 1, i = 2
f(S)new = max(f(S), 0) + i = 1 + 2 = 3
Thus, option (C) is correct.
Please comment below if you find anything wrong in the above post.
Please Login to comment...