Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Form the largest palindromic number using atmost two swaps

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a non-negative palindromic number num containing n number of digits. The problem is to apply at most two swap operations on the number num so that the resultant is the largest possible palindromic number.

Examples: 

Input  : 4697557964
Output : 9647557469
In, 4697557964 the highlighted digits were
swapped to get the largest palindromic number 
9647557469.

Input : 54345
Output : 54345
No swapping of digits required.

Approach:  If n < 3, then num itself is the largest possible palindromic number. Else calculate mid = (n / 2) – 1. Then create an array rightMax[] of size (mid + 1). rightMax[i] contains the index of the greatest digit which is on the right side of num[i] and also greater than num[i] and 0 <= i <= mid. If no such digit exists then rightMax[i] = -1. 

Now, traverse the rightMax[] array from i = 0 to m, and find the first element having rightMax[i] != -1. Perform the swap(num[i], num[rightMax[i]]) and swap(num[n – i – 1], num[n – rightMax[i] – 1]) operations and break.

Implementation:

C++




// C++ implementation to form the largest palindromic
// number using atmost two swaps
#include <bits/stdc++.h>
 
using namespace std;
 
// function to form the largest palindromic
// number using atmost two swaps
void largestPalin(char num[], int n)
{
    // if length of number is less than '3'
    // then no higher palindromic number
    // can be formed
    if (n <= 3)
        return;
 
    // find the index of last digit
    // in the 1st half of 'num'
    int mid = n / 2 - 1;
 
    int rightMax[mid + 1], right;
 
    // as only the first half of 'num[]' is
    // being considered, therefore
    // for the rightmost digit in the first half
    // of 'num[]', there will be no greater right digit
    rightMax[mid] = -1;
 
    // index of the greatest right digit till the
    // current index from the right direction
    right = mid;
 
    // traverse the array from second right element
    // in the first half of 'num[]' up to the
    // left element
    for (int i = mid - 1; i >= 0; i--) {
 
        // if 'num[i]' is less than the greatest digit
        // encountered so far
        if (num[i] < num[right])
            rightMax[i] = right;
 
        else {
 
            // there is no greater right digit
            // for 'num[i]'
            rightMax[i] = -1;
 
            // update 'right' index
            right = i;
        }
    }
 
    // traverse the 'rightMax[]' array from left to right
    for (int i = 0; i <= mid; i++) {
 
        // if for the current digit, greater right digit exists
        // then swap it with its greater right digit and also
        // perform the required swap operation in the right half
        // of 'num[]' to maintain palindromic property, then break
        if (rightMax[i] != -1) {
 
            // performing the required swap operations
            swap(num[i], num[rightMax[i]]);
            swap(num[n - i - 1], num[n - rightMax[i] - 1]);
            break;
        }
    }
}
 
// Driver program to test above
int main()
{
    char num[] = "4697557964";
    int n = strlen(num);
    largestPalin(num, n);
 
    // required largest palindromic number
    cout << "Largest Palindrome: "
         << num;
 
    return 0;
}


Java




// Java implementation to form the largest palindromic
// number using atmost two swaps
import java.io.*;
public class GFG
{
 
// function to form the largest palindromic
// number using atmost two swaps
static void largestPalin(char num[], int n)
{
    // if length of number is less than '3'
    // then no higher palindromic number
    // can be formed
    if (n <= 3)
        return;
 
    // find the index of last digit
    // in the 1st half of 'num'
    int mid = n / 2 - 1;
 
    int []rightMax = new int[mid + 1];int right;
 
    // as only the first half of 'num[]' is
    // being considered, therefore
    // for the rightmost digit in the first half
    // of 'num[]', there will be no greater right digit
    rightMax[mid] = -1;
 
    // index of the greatest right digit till the
    // current index from the right direction
    right = mid;
 
    // traverse the array from second right element
    // in the first half of 'num[]' up to the
    // left element
    for (int i = mid - 1; i >= 0; i--)
    {
 
        // if 'num[i]' is less than the greatest digit
        // encountered so far
        if (num[i] < num[right])
            rightMax[i] = right;
 
        else
        {
 
            // there is no greater right digit
            // for 'num[i]'
            rightMax[i] = -1;
 
            // update 'right' index
            right = i;
        }
    }
 
    // traverse the 'rightMax[]' array from left to right
    for (int i = 0; i <= mid; i++)
    {
 
        // if for the current digit, greater right digit exists
        // then swap it with its greater right digit and also
        // perform the required swap operation in the right half
        // of 'num[]' to maintain palindromic property, then break
        if (rightMax[i] != -1)
        {
 
            // performing the required swap operations
            swap(num,i, rightMax[i]);
            swap(num,n - i - 1, n - rightMax[i] - 1);
            break;
        }
    }
}
 
static char[] swap(char []arr, int i, int j)
{
    char temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
    return arr;
}
 
// Driver code
public static void main(String[] args)
{
    char num[] = "4697557964".toCharArray();
    int n = num.length;
    largestPalin(num, n);
 
    // required largest palindromic number
    System.out.println("Largest Palindrome: "
        + String.valueOf(num));
}
}
 
// This code has been contributed by 29AjayKumar


Python 3




# Python implementation to form the largest
# palindromic number using atmost two swaps
 
# function to form the largest palindromic
# number using atmost two swaps
def largestPalin(num, n):
 
    # if length of number is less than '3'
    # then no higher palindromic number
    # can be formed
    if n <= 3:
        return
 
    # find the index of last digit
    # in the 1st half of 'num'
    mid = n // 2 + 1
 
    rightMax = [0] * (mid + 1)
 
    # as only the first half of 'num[]' is
    # being considered, therefore
    # for the rightmost digit in the first half
    # of 'num[]', there will be no greater right digit
    rightMax[mid] = -1
 
    # index of the greatest right digit till the
    # current index from the right direction
    right = mid
 
    # traverse the array from second right element
    # in the first half of 'num[]' up to the
    # left element
    for i in range(mid-1, -1, -1):
         
        # if 'num[i]' is less than the greatest digit
        # encountered so far
        if num[i] < num[right]:
            rightMax[i] = right
 
        else:
 
            # there is no greater right digit
            # for 'num[i]'
            rightMax[i] = -1
 
            # update 'right' index
            right = i
 
    # traverse the 'rightMax[]' array from left to right
    for i in range(mid + 1):
 
        # if for the current digit, greater right digit exists
        # then swap it with its greater right digit and also
        # perform the required swap operation in the right half
        # of 'num[]' to maintain palindromic property, then break
        if rightMax[i] != -1:
 
            # performing the required swap operations
            num[i], num[rightMax[i]] = num[rightMax[i]], num[i]
            num[n-i-1], num[n - rightMax[i] - 1] = num[n - rightMax[i] - 1], num[n - i - 1]
            break
 
 
# Driver Code
if __name__ == "__main__":
    num = "4697557964"
    n = len(num)
     
    # Required as string object do not
    # support item assignment
    num = list(num)
    largestPalin(num, n)
 
    # making string again from list
    num = ''.join(num)
    print("Largest Palindrome: ",num)
 
# This code is contributed by
# sanjeev2552


C#




// C# implementation to form the largest
// palindromic number using atmost two swaps
using System;
 
class GFG
{
 
// function to form the largest palindromic
// number using atmost two swaps
static void largestPalin(char []num, int n)
{
    // if length of number is less than '3'
    // then no higher palindromic number
    // can be formed
    if (n <= 3)
        return;
 
    // find the index of last digit
    // in the 1st half of 'num'
    int mid = n / 2 - 1;
 
    int []rightMax = new int[mid + 1]; int right;
 
    // as only the first half of 'num[]' is
    // being considered, therefore
    // for the rightmost digit in the first half
    // of 'num[]', there will be no greater right digit
    rightMax[mid] = -1;
 
    // index of the greatest right digit till the
    // current index from the right direction
    right = mid;
 
    // traverse the array from second right element
    // in the first half of 'num[]' up to the
    // left element
    for (int i = mid - 1; i >= 0; i--)
    {
 
        // if 'num[i]' is less than the greatest
        // digit encountered so far
        if (num[i] < num[right])
            rightMax[i] = right;
 
        else
        {
 
            // there is no greater right digit
            // for 'num[i]'
            rightMax[i] = -1;
 
            // update 'right' index
            right = i;
        }
    }
 
    // traverse the 'rightMax[]' array
    // from left to right
    for (int i = 0; i <= mid; i++)
    {
 
        // if for the current digit, greater right
        // digit exists then swap it with its greater
        // right digit and also perform the required
        // swap operation in the right half of 'num[]'
        // to maintain palindromic property, then break
        if (rightMax[i] != -1)
        {
 
            // performing the required swap operations
            swap(num, i, rightMax[i]);
            swap(num, n - i - 1, n - rightMax[i] - 1);
            break;
        }
    }
}
 
static char[] swap(char []arr, int i, int j)
{
    char temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
    return arr;
}
 
// Driver code
public static void Main(String[] args)
{
    char []num = "4697557964".ToCharArray();
    int n = num.Length;
    largestPalin(num, n);
 
    // required largest palindromic number
    Console.WriteLine("Largest Palindrome: " +
                        String.Join("", num));
}
}
 
// This code contributed by Rajput-Ji


Javascript




<script>
 
// JavaScript implementation to form the largest palindromic
// number using atmost two swaps
 
// function to form the largest palindromic
// number using atmost two swaps
function largestPalin(num,n)
{
    // if length of number is less than '3'
    // then no higher palindromic number
    // can be formed
    if (n <= 3)
        return;
   
    // find the index of last digit
    // in the 1st half of 'num'
    let mid = Math.floor(n / 2) - 1;
   
    let rightMax = new Array(mid + 1);
    let right;
   
    // as only the first half of 'num[]' is
    // being considered, therefore
    // for the rightmost digit in the first half
    // of 'num[]', there will be no greater right digit
    rightMax[mid] = -1;
   
    // index of the greatest right digit till the
    // current index from the right direction
    right = mid;
   
    // traverse the array from second right element
    // in the first half of 'num[]' up to the
    // left element
    for (let i = mid - 1; i >= 0; i--)
    {
   
        // if 'num[i]' is less than the greatest digit
        // encountered so far
        if (num[i] < num[right])
            rightMax[i] = right;
   
        else
        {
   
            // there is no greater right digit
            // for 'num[i]'
            rightMax[i] = -1;
   
            // update 'right' index
            right = i;
        }
    }
   
    // traverse the 'rightMax[]' array from left to right
    for (let i = 0; i <= mid; i++)
    {
   
        // if for the current digit, greater right digit exists
        // then swap it with its greater right digit and also
        // perform the required swap operation in the right half
        // of 'num[]' to maintain palindromic property, then break
        if (rightMax[i] != -1)
        {
   
            // performing the required swap operations
            swap(num,i, rightMax[i]);
            swap(num,n - i - 1, n - rightMax[i] - 1);
            break;
        }
    }
}
 
function swap(arr,i,j)
{
    let temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
    return arr;
}
 
// Driver code
let num = "4697557964".split("");
let n = num.length;
largestPalin(num, n);
 
// required largest palindromic number
document.write("Largest Palindrome: "
        + (num).join(""));
 
// This code is contributed by rag2127
 
</script>


Output

Largest Palindrome: 9647557469

Time Complexity: O(n). 
Auxiliary Space: O(n).


My Personal Notes arrow_drop_up
Last Updated : 15 Dec, 2022
Like Article
Save Article
Similar Reads
Related Tutorials