Floor and Ceil from a BST
Given a binary search tree and a key(node) value, find the floor and ceil value for that particular key value.
- Floor Value Node: Node with the greatest data lesser than or equal to the key value.
- Ceil Value Node: Node with the smallest data larger than or equal to the key value.
Example:
8
/ \
4 12
/ \ / \
2 6 10 14Key: 11 Floor: 10 Ceil: 12
Key: 1 Floor: -1 Ceil: 2
Key: 6 Floor: 6 Ceil: 6
Key: 15 Floor: 14 Ceil: -1
There are numerous applications where we need to find the floor/ceil value of a key in a binary search tree or sorted array. For example, consider designing a memory management system in which free nodes are arranged in BST. Find the best fit for the input request.
Ceil in Binary Search Tree using Recursion:
To solve the problem follow the below idea:
Imagine we are moving down the tree, and assume we are root node.
The comparison yields three possibilities,A) Root data is equal to key. We are done, root data is ceil value.
B) Root data < key value, certainly the ceil value can’t be in left subtree.
Proceed to search on right subtree as reduced problem instance.C) Root data > key value, the ceil value may be in left subtree.
We may find a node with is larger data than key value in left subtree,
if not the root itself will be ceil node.
Below is the implementation of the above approach:
C++
// C++ Program to find ceil of a given value in BST #include <bits/stdc++.h> using namespace std; /* A binary tree node has key, left child and right child */ class node { public : int key; node* left; node* right; }; /* Helper function that allocates a new node with the given key and NULL left and right pointers.*/ node* newNode( int key) { node* Node = new node(); Node->key = key; Node->left = NULL; Node->right = NULL; return (Node); } // Function to find ceil of a given input in BST. If input // is more than the max key in BST, return -1 int Ceil(node* root, int input) { // Base case if (root == NULL) return -1; // We found equal key if (root->key == input) return root->key; // If root's key is smaller, ceil must be in right // subtree if (root->key < input) return Ceil(root->right, input); // Else, either left subtree or root has the ceil value int ceil = Ceil(root->left, input); return ( ceil >= input) ? ceil : root->key; } // Driver code int main() { node* root = newNode(8); root->left = newNode(4); root->right = newNode(12); root->left->left = newNode(2); root->left->right = newNode(6); root->right->left = newNode(10); root->right->right = newNode(14); for ( int i = 0; i < 16; i++) cout << i << " " << Ceil(root, i) << endl; return 0; } // This code is contributed by rathbhupendra |
C
// C Program to find ceil of a given value in BST #include <stdio.h> #include <stdlib.h> /* A binary tree node has key, left child and right child */ struct node { int key; struct node* left; struct node* right; }; /* Helper function that allocates a new node with the given key and NULL left and right pointers.*/ struct node* newNode( int key) { struct node* node = ( struct node*) malloc ( sizeof ( struct node)); node->key = key; node->left = NULL; node->right = NULL; return (node); } // Function to find ceil of a given input in BST. If input // is more than the max key in BST, return -1 int Ceil( struct node* root, int input) { // Base case if (root == NULL) return -1; // We found equal key if (root->key == input) return root->key; // If root's key is smaller, ceil must be in right // subtree if (root->key < input) return Ceil(root->right, input); // Else, either left subtree or root has the ceil value int ceil = Ceil(root->left, input); return ( ceil >= input) ? ceil : root->key; } // Driver code int main() { struct node* root = newNode(8); root->left = newNode(4); root->right = newNode(12); root->left->left = newNode(2); root->left->right = newNode(6); root->right->left = newNode(10); root->right->right = newNode(14); for ( int i = 0; i < 16; i++) printf ( "%d %d\n" , i, Ceil(root, i)); return 0; } |
Java
// Java program to find ceil of a given value in BST class Node { int data; Node left, right; Node( int d) { data = d; left = right = null ; } } class BinaryTree { Node root; // Function to find ceil of a given input in BST. // If input is more than the max key in BST, // return -1 int Ceil(Node node, int input) { // Base case if (node == null ) { return - 1 ; } // We found equal key if (node.data == input) { return node.data; } // If root's key is smaller, // ceil must be in right subtree if (node.data < input) { return Ceil(node.right, input); } // Else, either left subtree or root // has the ceil value int ceil = Ceil(node.left, input); return (ceil >= input) ? ceil : node.data; } // Driver Code public static void main(String[] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node( 8 ); tree.root.left = new Node( 4 ); tree.root.right = new Node( 12 ); tree.root.left.left = new Node( 2 ); tree.root.left.right = new Node( 6 ); tree.root.right.left = new Node( 10 ); tree.root.right.right = new Node( 14 ); for ( int i = 0 ; i < 16 ; i++) { System.out.println(i + " " + tree.Ceil(tree.root, i)); } } } // This code has been contributed by Mayank Jaiswal |
Python
# Python program to find ceil of a given value in BST # A Binary tree node class Node: # Constructor to create a new node def __init__( self , data): self .key = data self .left = None self .right = None # Function to find ceil of a given input in BST. If input # is more than the max key in BST, return -1 def ceil(root, inp): # Base Case if root = = None : return - 1 # We found equal key if root.key = = inp: return root.key # If root's key is smaller, ceil must be in right subtree if root.key < inp: return ceil(root.right, inp) # Else, either left subtree or root has the ceil value val = ceil(root.left, inp) return val if val > = inp else root.key # Driver code if __name__ = = '__main__' : root = Node( 8 ) root.left = Node( 4 ) root.right = Node( 12 ) root.left.left = Node( 2 ) root.left.right = Node( 6 ) root.right.left = Node( 10 ) root.right.right = Node( 14 ) for i in range ( 16 ): print "% d % d" % (i, ceil(root, i)) # This code is contributed by Nikhil Kumar Singh(nickzuck_007) |
C#
using System; // C# program to find ceil of a given value in BST public class Node { public int data; public Node left, right; public Node( int d) { data = d; left = right = null ; } } public class BinaryTree { public static Node root; // Function to find ceil of a given input in BST. If // input is more than the max key in BST, return -1 public virtual int Ceil(Node node, int input) { // Base case if (node == null ) { return -1; } // We found equal key if (node.data == input) { return node.data; } // If root's key is smaller, ceil must be in right // subtree if (node.data < input) { return Ceil(node.right, input); } // Else, either left subtree or root has the ceil // value int ceil = Ceil(node.left, input); return (ceil >= input) ? ceil : node.data; } // Driver program to test the above functions public static void Main( string [] args) { BinaryTree tree = new BinaryTree(); BinaryTree.root = new Node(8); BinaryTree.root.left = new Node(4); BinaryTree.root.right = new Node(12); BinaryTree.root.left.left = new Node(2); BinaryTree.root.left.right = new Node(6); BinaryTree.root.right.left = new Node(10); BinaryTree.root.right.right = new Node(14); for ( int i = 0; i < 16; i++) { Console.WriteLine(i + " " + tree.Ceil(root, i)); } } } // This code is contributed by Shrikant13 |
Javascript
<script> // Javascript program to find ceil // of a given value in BST class Node { constructor(x) { this .data = x; this .left = null ; this .right = null ; } } let root; // Function to find ceil of // a given input in BST. // If input is more than the max // key in BST, // return -1 function Ceil(node,input) { // Base case if (node == null ) { return -1; } // We found equal key if (node.data == input) { return node.data; } // If root's key is smaller, // ceil must be in right subtree if (node.data < input) { return Ceil(node.right, input); } // Else, either left subtree or root // has the ceil value let ceil = Ceil(node.left, input); return (ceil >= input) ? ceil : node.data; } // Driver Code root = new Node(8) root.left = new Node(4) root.right = new Node(12) root.left.left = new Node(2) root.left.right = new Node(6) root.right.left = new Node(10) root.right.right = new Node(14) for (let i = 0; i < 16; i++) { document.write(i + " " + Ceil(root, i)+ "<br>" ); } // This code is contributed by unknown2108 </script> |
0 2 1 2 2 2 3 4 4 4 5 6 6 6 7 8 8 8 9 10 10 10 11 12 12 12 13 14 14 14 15 -1
Time complexity: O(log N)
Auxiliary Space: O(log N)
Below is the implementation to find the floor value:
C++
// C++ Program to find floor of a given value in BST #include <bits/stdc++.h> using namespace std; /* A binary tree node has key, left child and right child */ class node { public : int key; node* left; node* right; }; /* Helper function that allocates a new node with the given key and NULL left and right pointers.*/ node* newNode( int key) { node* Node = new node(); Node->key = key; Node->left = NULL; Node->right = NULL; return (Node); } // Function to find floor of a given input in BST. If input // is more than the min key in BST, return -1 int Floor(node* root, int input) { // Base case if (root == NULL) return -1; // We found equal key if (root->key == input) return root->key; // If root's key is larger, floor must be in left // subtree if (root->key > input) return Floor(root->left, input); // Else, either right subtree or root has the floor // value else { int floor = Floor(root->right, input); // exception for -1 because it is being returned in // base case return ( floor <= input && floor != -1) ? floor : root->key; } } // Driver code int main() { node* root = newNode(8); root->left = newNode(4); root->right = newNode(12); root->left->left = newNode(2); root->left->right = newNode(6); root->right->left = newNode(10); root->right->right = newNode(14); for ( int i = 0; i < 16; i++) cout << i << " " << Floor(root, i) << endl; return 0; } // This code is contributed by rathbhupendra |
Java
// Java program to find ceil of a given value in BST class Node { int data; Node left, right; Node( int d) { data = d; left = right = null ; } } class BinaryTree { Node root; // Function to find ceil of a given input in BST. // If input is more than the max key in BST, // return -1 int Floor(Node node, int input) { // Base case if (node == null ) { return - 1 ; } // We found equal key if (node.data == input) { return node.data; } // If root's key is larger, // floor must be in left subtree if (node.data > input) { return Floor(node.left, input); } // Else, either right subtree or root // has the floor value else { int floor = Floor(node.right, input); // exception for -1 because it is being returned // in base case return (floor <= input && floor != - 1 ) ? floor : node.data; } } // Driver Code public static void main(String[] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node( 8 ); tree.root.left = new Node( 4 ); tree.root.right = new Node( 12 ); tree.root.left.left = new Node( 2 ); tree.root.left.right = new Node( 6 ); tree.root.right.left = new Node( 10 ); tree.root.right.right = new Node( 14 ); for ( int i = 0 ; i < 16 ; i++) { System.out.println(i + " " + tree.Floor(tree.root, i)); } } } // This code is contributed by Shubham Singh |
Python3
# Python program to find Floor of a given value in BST # A Binary tree node class Node: # Constructor to create a new node def __init__( self , data): self .key = data self .left = None self .right = None # Function to find Floor of a given input in BST. If input # is more than the max key in BST, return -1 def Floor(root, inp): # Base Case if root = = None : return - 1 # We found equal key if root.key = = inp: return root.key # If root's key is larger, Floor must be in left subtree if root.key > inp: return Floor(root.left, inp) # Else, either right subtree or root has the Floor value else : floor = Floor(root.right, inp) # exception for -1 because it is being returned in base case return floor if floor < = inp and floor ! = - 1 else root.key # Driver code if __name__ = = '__main__' : root = Node( 8 ) root.left = Node( 4 ) root.right = Node( 12 ) root.left.left = Node( 2 ) root.left.right = Node( 6 ) root.right.left = Node( 10 ) root.right.right = Node( 14 ) for i in range ( 16 ): print (i, Floor(root, i)) # This code is contributed by Shubham Singh |
C#
// C# program to find ceil of a given value in BST using System; public class Node { public int data; public Node left, right; public Node( int d) { data = d; left = right = null ; } } public class BinaryTree { public static Node root; // Function to find ceil of a given input in BST. // If input is more than the max key in BST, // return -1 public virtual int Floor(Node node, int input) { // Base case if (node == null ) { return -1; } // We found equal key if (node.data == input) { return node.data; } // If root's key is larger, // floor must be in left subtree if (node.data > input) { return Floor(node.left, input); } // Else, either right subtree or root // has the floor value else { int floor = Floor(node.right, input); // exception for -1 because it is being returned // in base case return (floor <= input && floor != -1) ? floor : node.data; } } // Driver program to test the above functions public static void Main( string [] args) { BinaryTree tree = new BinaryTree(); BinaryTree.root = new Node(8); BinaryTree.root.left = new Node(4); BinaryTree.root.right = new Node(12); BinaryTree.root.left.left = new Node(2); BinaryTree.root.left.right = new Node(6); BinaryTree.root.right.left = new Node(10); BinaryTree.root.right.right = new Node(14); for ( int i = 0; i < 16; i++) { Console.WriteLine(i + " " + tree.Floor(root, i)); } } } // This code is contributed by karandeep1234 |
Javascript
// Javascript Program to find floor of a given value in BST class Node { constructor(x) { this .data = x; this .left = null ; this .right = null ; } } let root; // Function to find floor of a given input in BST. If input is more // than the min key in BST, return -1 function Floor(root, input) { // Base Case if (root == null ) return -1; // We found equal key if (root.data == input) return root.data; // If root's key is larger, floor must be in left // subtree if (root.data > input){ return Floor(root.left, input); } // Else, either right subtree or root has the floor // value else { let floor = Floor(root.right, input); // exception for -1 because it is being returned in // base case return (floor <= input && floor != -1) ? floor : root.data; } } // Driver Code root = new Node(8) root.left = new Node(4) root.right = new Node(12) root.left.left = new Node(2) root.left.right = new Node(6) root.right.left = new Node(10) root.right.right = new Node(14) for (let i = 0; i < 16; i++) { console.log(i + " " + Floor(root, i)); } // This code is contributed by Yash Agarwal(yashagarwal2852002) |
0 -1 1 -1 2 2 3 2 4 4 5 4 6 6 7 6 8 8 9 8 10 10 11 10 12 12 13 12 14 14 15 14
Time complexity: O(log N)
Auxiliary Space: O(log N)
The iterative approach to find the floor and ceil value in a BST:
To solve the problem follow the below steps:
- If the tree is empty, i.e. root is null, return back to the calling function.
- If the current node address is not null, perform the following steps :
- If the current node data matches with the key value – We have found both our floor and ceil value.
Hence, we return back to the calling function. - If data in the current node is lesser than the key value – We assign the current node data to the variable keeping
track of current floor value and explore the right subtree, as it may contain nodes with values greater than the key value. - If data in the current node is greater than the key value – We assign the current node data to the variable keeping track
of current ceil value and explore the left subtree, as it may contain nodes with values lesser than the key value.
- If the current node data matches with the key value – We have found both our floor and ceil value.
- Once we reach null, we return back to the calling function, as we have got our required floor and ceil values for the particular key value.
Below is the implementation of the above approach:
C++
// C++ program to find floor and ceil of a given key in BST #include <bits/stdc++.h> using namespace std; /* A binary tree node has key, left child and right child */ struct Node { int data; Node *left, *right; Node( int value) { data = value; left = right = NULL; } }; // Helper function to find floor and ceil of a given key in // BST void floorCeilBSTHelper(Node* root, int key, int & floor , int & ceil ) { while (root) { if (root->data == key) { ceil = root->data; floor = root->data; return ; } if (key > root->data) { floor = root->data; root = root->right; } else { ceil = root->data; root = root->left; } } return ; } // Display the floor and ceil of a given key in BST. // If key is less than the min key in BST, floor will be -1; // If key is more than the max key in BST, ceil will be -1; void floorCeilBST(Node* root, int key) { // Variables 'floor' and 'ceil' are passed by reference int floor = -1, ceil = -1; floorCeilBSTHelper(root, key, floor , ceil ); cout << key << ' ' << floor << ' ' << ceil << '\n' ; } // Driver code int main() { Node* root = new Node(8); root->left = new Node(4); root->right = new Node(12); root->left->left = new Node(2); root->left->right = new Node(6); root->right->left = new Node(10); root->right->right = new Node(14); for ( int i = 0; i < 16; i++) floorCeilBST(root, i); return 0; } |
Java
// Java program to find floor and ceil // of a given key in BST import java.io.*; // A binary tree node has key, // left child and right child class Node { int data; Node left, right; Node( int d) { data = d; left = right = null ; } } class BinaryTree { Node root; int floor; int ceil; // Helper function to find floor and // ceil of a given key in BST public void floorCeilBSTHelper(Node root, int key) { while (root != null ) { if (root.data == key) { ceil = root.data; floor = root.data; return ; } if (key > root.data) { floor = root.data; root = root.right; } else { ceil = root.data; root = root.left; } } return ; } // Display the floor and ceil of a // given key in BST. If key is less // than the min key in BST, floor // will be -1; If key is more than // the max key in BST, ceil will be -1; public void floorCeilBST(Node root, int key) { // Variables 'floor' and 'ceil' // are passed by reference floor = - 1 ; ceil = - 1 ; floorCeilBSTHelper(root, key); System.out.println(key + " " + floor + " " + ceil); } // Driver code public static void main(String[] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node( 8 ); tree.root.left = new Node( 4 ); tree.root.right = new Node( 12 ); tree.root.left.left = new Node( 2 ); tree.root.left.right = new Node( 6 ); tree.root.right.left = new Node( 10 ); tree.root.right.right = new Node( 14 ); for ( int i = 0 ; i < 16 ; i++) { tree.floorCeilBST(tree.root, i); } } } // This code is contributed by RohitOberoi |
Python3
# Python3 program to find floor and # ceil of a given key in BST # A binary tree node has key, # . left child and right child class Node: def __init__( self , x): self .data = x self .left = None self .right = None # Helper function to find floor and # ceil of a given key in BST def floorCeilBSTHelper(root, key): global floor, ceil while (root): if (root.data = = key): ceil = root.data floor = root.data return if (key > root.data): floor = root.data root = root.right else : ceil = root.data root = root.left # Display the floor and ceil of a given # key in BST. If key is less than the min # key in BST, floor will be -1; If key is # more than the max key in BST, ceil will be -1; def floorCeilBST(root, key): global floor, ceil # Variables 'floor' and 'ceil' # are passed by reference floor = - 1 ceil = - 1 floorCeilBSTHelper(root, key) print (key, floor, ceil) # Driver code if __name__ = = '__main__' : floor, ceil = - 1 , - 1 root = Node( 8 ) root.left = Node( 4 ) root.right = Node( 12 ) root.left.left = Node( 2 ) root.left.right = Node( 6 ) root.right.left = Node( 10 ) root.right.right = Node( 14 ) for i in range ( 16 ): floorCeilBST(root, i) # This code is contributed by mohit kumar 29 |
C#
// C# program to find floor and ceil // of a given key in BST using System; // A binary tree node has key, // left child and right child public class Node { public int data; public Node left, right; public Node( int d) { data = d; left = right = null ; } } public class BinaryTree { public static Node root; int floor; int ceil; // Helper function to find floor and // ceil of a given key in BST public int floorCeilBSTHelper(Node root, int key) { while (root != null ) { if (root.data == key) { ceil = root.data; floor = root.data; return 0; } if (key > root.data) { floor = root.data; root = root.right; } else { ceil = root.data; root = root.left; } } return 0; } // Display the floor and ceil of a // given key in BST. If key is less // than the min key in BST, floor // will be -1; If key is more than // the max key in BST, ceil will be -1; public void floorCeilBST(Node root, int key) { // Variables 'floor' and 'ceil' // are passed by reference floor = -1; ceil = -1; floorCeilBSTHelper(root, key); Console.WriteLine(key + " " + floor + " " + ceil); } // Driver code static public void Main() { BinaryTree tree = new BinaryTree(); BinaryTree.root = new Node(8); BinaryTree.root.left = new Node(4); BinaryTree.root.right = new Node(12); BinaryTree.root.left.left = new Node(2); BinaryTree.root.left.right = new Node(6); BinaryTree.root.right.left = new Node(10); BinaryTree.root.right.right = new Node(14); for ( int i = 0; i < 16; i++) { tree.floorCeilBST(BinaryTree.root, i); } } } // This code is contributed by avanitrachhadiya2155 |
Javascript
<script> // Javascript program to find floor and ceil // of a given key in BST // A binary tree node has key, // left child and right child class Node { constructor(d) { this .data = d; this .left = null ; this .right = null ; } } var root = null ; var floor; var ceil; // Helper function to find floor and // ceil of a given key in BST function floorCeilBSTHelper(root, key) { while (root != null ) { if (root.data == key) { ceil = root.data; floor = root.data; return 0; } if (key > root.data) { floor = root.data; root = root.right; } else { ceil = root.data; root = root.left; } } return 0; } // Display the floor and ceil of a // given key in BST. If key is less // than the min key in BST, floor // will be -1; If key is more than // the max key in BST, ceil will be -1; function floorCeilBST(root, key) { // Variables 'floor' and 'ceil' // are passed by reference floor = -1; ceil = -1; floorCeilBSTHelper(root, key); document.write(key + " " + floor + " " + ceil + "<br>" ); } // Driver code root = new Node(8); root.left = new Node(4); root.right = new Node(12); root.left.left = new Node(2); root.left.right = new Node(6); root.right.left = new Node(10); root.right.right = new Node(14); for ( var i = 0; i < 16; i++) { floorCeilBST(root, i); } // This code is contributed by rrrtnx. </script> |
0 -1 2 1 -1 2 2 2 2 3 2 4 4 4 4 5 4 6 6 6 6 7 6 8 8 8 8 9 8 10 10 10 10 11 10 12 12 12 12 13 12 14 14 14 14 15 14 -1
Time Complexity: O(log N)
Auxiliary Space: O(1)
Exercise:
- Modify the above code to find the floor value of the input key in a binary search tree.
- Write a neat algorithm to find floor and ceil values in a sorted array. Ensure to handle all possible boundary conditions.
Please Login to comment...