Finding the Nth term in a sequence formed by removing digit K from natural numbers
Given the integers N, K and an infinite sequence of natural numbers where all the numbers containing the digit K (1<=K<=9) are removed. The task is to return the Nth number of this sequence.
Example:
Input: N = 12, K = 2
Output: 14
Explanation: The sequence generated for the above input would be like this: 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, up to infinityInput: N = 10, K = 1
Output: 22
Naive Approach: The basic approach to solving the above problem would be to iterate up to N and keep excluding all numbers less than N containing the given digit K. Finally, print the Nth natural number obtained.
Time Complexity: O(N)
Auxiliary Space: O(1)
Efficient Approach: The efficient approach to solve this is inspired from Nth natural number after removing all numbers consisting of the digit 9.
Given problem can be solved by converting the value of K to base 9 form if it is more than 8. Below steps can be followed:
- Calculate the Nth natural number to base 9 format
- Increment 1 to every digit of the base 9 number which is greater than or equal to K
- The next number is the desired answer
Below is the code for the above approach:
C++
// C++ implementation for the above approach #include <iostream> using namespace std; long long convertToBase9( long long n) { long long ans = 0; // Denotes the digit place long long a = 1; // Method to convert any number // to binary equivalent while (n > 0) { ans += (a * (n % 9)); a *= 10; n /= 9; } return ans; } long long getNthnumber( long long base9, long long K) { long long ans = 0; // denotes the current digits place long long a = 1; while (base9 > 0) { int cur = base9 % 10; // If current digit is >= K // increment its value by 1 if (cur >= K) { ans += a * (cur + 1); } // Else add the digit as it is else { ans += a * cur; } base9 /= 10; // Move to the next digit a *= 10; } return ans; } // Driver code int main() { long long N = 10, K = 1; long long base9 = convertToBase9(N); cout << getNthnumber(base9, K); return 0; } |
Java
// Java implementation for the above approach import java.io.*; class GFG { static long convertToBase9( long n) { long ans = 0 ; // Denotes the digit place long a = 1 ; // Method to convert any number // to binary equivalent while (n > 0 ) { ans += (a * (n % 9 )); a *= 10 ; n /= 9 ; } return ans; } static long getNthnumber( long base9, long K) { long ans = 0 ; // denotes the current digits place long a = 1 ; while (base9 > 0 ) { int cur = ( int )(base9 % 10 ); // If current digit is >= K // increment its value by 1 if (cur >= K) { ans += a * (cur + 1 ); } // Else add the digit as it is else { ans += a * cur; } base9 /= 10 ; // Move to the next digit a *= 10 ; } return ans; } // Driver code public static void main (String[] args) { long N = 10 , K = 1 ; long base9 = convertToBase9(N); System.out.println(getNthnumber(base9, K)); } } // This code is contributed by Dharanendra L V. |
Python3
# Python 3 implementation for the above approach def convertToBase9(n): ans = 0 # Denotes the digit place a = 1 # Method to convert any number # to binary equivalent while (n > 0 ): ans + = (a * (n % 9 )) a * = 10 n / / = 9 return ans def getNthnumber(base9, K): ans = 0 # denotes the current digits place a = 1 while (base9 > 0 ): cur = base9 % 10 # If current digit is >= K # increment its value by 1 if (cur > = K): ans + = a * (cur + 1 ) # Else add the digit as it is else : ans + = a * cur base9 / / = 10 # Move to the next digit a * = 10 return ans # Driver code if __name__ = = '__main__' : N = 10 K = 1 base9 = convertToBase9(N) print (getNthnumber(base9, K)) # This code is contributed by SURENDRA_GANGWAR. |
C#
// C# implementation for the above approach using System; class GFG { static long convertToBase9( long n) { long ans = 0; // Denotes the digit place long a = 1; // Method to convert any number // to binary equivalent while (n > 0) { ans += (a * (n % 9)); a *= 10; n /= 9; } return ans; } static long getNthnumber( long base9, long K) { long ans = 0; // denotes the current digits place long a = 1; while (base9 > 0) { int cur = ( int )(base9 % 10); // If current digit is >= K // increment its value by 1 if (cur >= K) { ans += a * (cur + 1); } // Else add the digit as it is else { ans += a * cur; } base9 /= 10; // Move to the next digit a *= 10; } return ans; } // Driver code public static void Main (String[] args) { long N = 10, K = 1; long base9 = convertToBase9(N); Console.Write(getNthnumber(base9, K)); } } // This code is contributed by shivanisinghss2110 |
Javascript
<script> // Javascript implementation for the above approach function convertToBase9(n) { let ans = 0; // Denotes the digit place let a = 1; // Method to convert any number // to binary equivalent while (n > 0) { ans += a * (n % 9); a *= 10; n = Math.floor(n / 9); } return ans; } function getNthnumber(base9, K) { let ans = 0; // denotes the current digits place let a = 1; while (base9 > 0) { let cur = base9 % 10; // If current digit is >= K // increment its value by 1 if (cur >= K) { ans += a * (cur + 1); } // Else add the digit as it is else { ans += a * cur; } base9 = Math.floor(base9 / 10); // Move to the next digit a *= 10; } return ans; } // Driver code let N = 10, K = 1; let base9 = convertToBase9(N); document.write(getNthnumber(base9, K)); // This code is contributed by gfgking. </script> |
22
Time Complexity: O(log9N)
Auxiliary Space: O(1)
Please Login to comment...