Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Finding sum of digits of a number until sum becomes single digit

  • Difficulty Level : Medium
  • Last Updated : 22 Oct, 2021

Given a number n, we need to find the sum of its digits such that: 

If n < 10    
    digSum(n) = n
Else         
    digSum(n) = Sum(digSum(n))

Examples : 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

Input : 1234
Output : 1
Explanation : The sum of 1+2+3+4 = 10, 
              digSum(x) == 10
              Hence ans will be 1+0 = 1

Input : 5674
Output : 4 

A brute force approach is to sum all the digits until sum < 10. 
Flowchart: 



Below is the brute force program to find the sum. 

C++




// C++ program to find sum of
// digits of a number until
// sum becomes single digit.
#include<bits/stdc++.h>
  
using namespace std;
 
int digSum(int n)
{
    int sum = 0;
    
    // Loop to do sum while
    // sum is not less than
    // or equal to 9
    while(n > 0 || sum > 9)
    {
        if(n == 0)
        {
            n = sum;
            sum = 0;
        }
        sum += n % 10;
        n /= 10;
    }
    return sum;
}
 
// Driver program to test the above function
int main()
{
    int n = 1234;
    cout << digSum(n);
    return 0;
}


Java




// Java program to find sum of
// digits of a number until
// sum becomes single digit.
import java.util.*;
 
public class GfG {
     
    static int digSum(int n)
    {
        int sum = 0;
 
        // Loop to do sum while
        // sum is not less than
        // or equal to 9
        while (n > 0 || sum > 9)
        {
            if (n == 0) {
                n = sum;
                sum = 0;
            }
            sum += n % 10;
            n /= 10;
        }
        return sum;
    }
     
    // Driver code
    public static void main(String argc[])
    {
        int n = 1234;
        System.out.println(digSum(n));
    }
}
 
// This code is contributed by Gitanjali.


Python




# Python program to find sum of
# digits of a number until
# sum becomes single digit.
import math
 
# method to find sum of digits
# of a number until sum becomes
# single digit
def digSum( n):
    sum = 0
     
    while(n > 0 or sum > 9):
     
        if(n == 0):
            n = sum
            sum = 0
         
        sum += n % 10
        n /= 10
     
    return sum
 
# Driver method
n = 1234
print (digSum(n))
 
# This code is contributed by Gitanjali.


C#




// C# program to find sum of
// digits of a number until
// sum becomes single digit.
using System;
 
class GFG {
     
    static int digSum(int n)
    {
        int sum = 0;
 
        // Loop to do sum while
        // sum is not less than
        // or equal to 9
        while (n > 0 || sum > 9)
        {
            if (n == 0)
            {
                n = sum;
                sum = 0;
            }
            sum += n % 10;
            n /= 10;
        }
        return sum;
    }
     
    // Driver code
    public static void Main()
    {
        int n = 1234;
        Console.Write(digSum(n));
    }
}
 
// This code is contributed by nitin mittal


PHP




<?php
// PHP program to find sum of
// digits of a number until
// sum becomes single digit.
 
function digSum( $n)
{
    $sum = 0;
     
    // Loop to do sum while
    // sum is not less than
    // or equal to 9
    while($n > 0 || $sum > 9)
    {
        if($n == 0)
        {
            $n = $sum;
            $sum = 0;
        }
        $sum += $n % 10;
        $n = (int)$n / 10;
    }
    return $sum;
}
 
// Driver Code
$n = 1234;
echo digSum($n);
 
// This code is contributed
// by aj_36
?>


Javascript




<script>
// Javascript program to find sum of
// digits of a number until
// sum becomes single digit.
    let n = 1234;
    //Function to get sum of digits
    function getSum(n) {
        let sum = 0;
        while (n > 0 || sum > 9) {
             if(n == 0) {
                n = sum;
                sum = 0;
             }
             sum = sum + n % 10;
             n = Math.floor(n / 10);
        }
        return sum;
    }
 //function call  
    document.write(getSum(n));
     
//This code is contributed by Surbhi Tyagi
</script>


Output : 

1

There exists a simple and elegant O(1) solution for this too. The ans is given by simply :- 

If n == 0
   return 0;

If n % 9 == 0      
    digSum(n) = 9
Else               
    digSum(n) = n % 9 

How does the above logic works? 
If a number n is divisible by 9, then the sum of its digit until sum becomes single digit is always 9. For example, 
Let, n = 2880 
Sum of digits = 2 + 8 + 8 = 18: 18 = 1 + 8 = 9
A number can be of the form 9x or 9x + k. For the first case, answer is always 9. For the second case, and is always k.

Below is the implementation of the above idea : 

C++




#include<bits/stdc++.h>
using namespace std;
 
int digSum(int n)
{
    if (n == 0)
       return 0;
    return (n % 9 == 0) ? 9 : (n % 9);
}
 
// Driver program to test the above function
int main()
{
    int n = 9999;
    cout<<digSum(n);
    return 0;
}


Java




import java.io.*;
 
class GFG {
 
    static int digSum(int n)
    {
        if (n == 0)
        return 0;
        return (n % 9 == 0) ? 9 : (n % 9);
    }
     
    // Driver program to test the above function
    public static void main (String[] args)
    {
        int n = 9999;
        System.out.println(digSum(n));
    }
}
 
// This code is contributed by anuj_67.


Python3




def digSum(n):
 
    if (n == 0):
        return 0
    if (n % 9 == 0):
        return 9
    else:
       return (n % 9)
 
# Driver program to test the above function
n = 9999
print(digSum(n))
 
# This code is contributed by
# Smitha Dinesh Semwal


C#




using System;
 
class GFG
{
    static int digSum(int n)
    {
        if (n == 0)
        return 0;
        return (n % 9 == 0) ? 9 : (n % 9);
    }
     
    // Driver Code
    public static void Main ()
    {
        int n = 9999;
        Console.Write(digSum(n));
     
    }
}
 
// This code is contributed by aj_36


PHP




<?php
 
function digSum($n)
{
    if ($n == 0)
        return 0;
    return ($n % 9 == 0) ? 9 : ($n % 9);
}
 
// Driver program to test the above function
$n = 9999;
echo digSum($n);
 
//This code is contributed by anuj_67.
?>


Javascript




<script>
     
function digSum(n)
{
    if (n == 0)
        return 0;
         
    return (n % 9 == 0) ? 9 : (n % 9);
}
 
// Driver code
n = 9999;
document.write(digSum(n));
 
// This code is contributed by code_hunt
 
</script>


Output: 

9

Related Post : 
https://www.geeksforgeeks.org/digital-rootrepeated-digital-sum-given-integer/

This article is contributed by Ayush Khanduri. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :