GFG App
Open App
Browser
Continue

# Finding Inverse of a Matrix in R Programming – inv() Function

`inv()` function in R Language is used to calculate inverse of a matrix.

Note: Determinant of the matrix must not be zero

Syntax: inv(x)

Parameters:
x: Matrix

Example 1:

 `# R program to calculate  ` `# inverse of a matrix ` ` `  `# Loading library ` `library(matlib) ` ` `  `# Create 3 different vectors.  ` `a1 <``-` `c(``3``, ``2``, ``8``)  ` `a2 <``-` `c(``6``, ``3``, ``2``)  ` `a3 <``-` `c(``5``, ``2``, ``4``)  ` `   `  `# Bind the 3 matrices row-wise   ` `# using the rbind() function.  ` `A <``-` `rbind(a1, a2, a3)  ` `   `  `# find inverse using the inv() function.  ` `print``(inv(A)) `

Output:

```           [, 1]       [, 2]       [, 3]
[1, ] -0.2857143 -0.2857143  0.7142857
[2, ]  0.5000000  1.0000000 -1.5000000
[3, ]  0.1071429 -0.1428571  0.1071429
```

Example 2:

 `# R program to calculate ` `# inverse of a matrix ` ` `  `# Loading Library ` `library(matlib) ` ` `  `# Creating a matrix ` `A ``=` `matrix(c(``2``, ``5``, ``3``, ``4``, ``5``, ``2``, ``6``, ``3``, ``4``), ``3``, ``3``)  ` ` `  `det(A) ` ` `  `# Calling inv() function ` `cat(``"Inverse of A:\n"``)  ` `inv(A) `

Output:

```[1] -46
Inverse of A:
[, 1]        [, 2]       [, 3]
[1, ] -0.3043478  0.08695652  0.3913044
[2, ]  0.2391304  0.21739130 -0.5217391
[3, ]  0.1086957 -0.17391304  0.2173913
```

My Personal Notes arrow_drop_up