Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Find winner of the game when any set bit is removed in each move

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Two players, Player 1 and Player 2, are given an integer N to play a game. The rules of the game are as follows : 

  • In one turn, a player can remove any set bit of N in its binary representation to make a new N. 
  • Player 1 always takes the first turn. 
  • If a player cannot make a move, he loses.

Examples:

Input: N = 8
Output: 1
Explanation: N = 8
N = 1000 (binary)
Player 1 takes the bit.
The remaining bits are all zero.
Player 2 cannot make a move,  
so Player 1 wins.

Input: N = 3
Output: 2

Approach: The given problem can be solved by following the below idea:

Calculate the number of set bits in N. If the number of set bits is odd then player 1 will always win [because he will take the following turns – 1st, 3rd, 5th, . . . and any odd turn]. Otherwise, player 2 will win the game.

Follow the steps mentioned below to implement the:

  • Calculate the number of set bits in N.
  • If the number of the set bits is odd then player 1 wins.
  • Else, player 2 wins.

Below is the implementation of the above approach.

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the winner
int swapBitGame(long long N)
{
    int bitCount = 0;
 
    // Calculate the number of set bit in
    // N using Brian Kernighan's Algorithm
    while (N) {
        N = (N & (N - 1));
        bitCount++;
    }
 
    // If bitCount is even return 2
    // else return 1
    return bitCount % 2 == 0 ? 2 : 1;
}
 
// Driver Code
int main()
{
    long long N = 8;
 
    // Function Call
    cout << swapBitGame(N) << endl;
 
    return 0;
}


Java




// Java code to implement the approach
import java.io.*;
 
class GFG {
 
  // Function to find the winner
  static int swapBitGame(long N)
  {
    int bitCount = 0;
 
    // Calculate the number of set bit in
    // N using Brian Kernighan's Algorithm
    while (N!=0) {
      N = (N & (N - 1));
      bitCount++;
    }
 
    // If bitCount is even return 2
    // else return 1
    return bitCount % 2 == 0 ? 2 : 1;
  }
 
  public static void main(String[] args)
  {
    long N = 8;
 
    // Function call
    System.out.println(swapBitGame(N));
  }
}
 
// This code is contributed by lokeshmvs21.


Python




# Python code to implement the approach
 
# Function to find the winner
def swapBitGame(N):
     
    bitCount = 0
 
    # Calculate the number of set bit in
    # N using Brian Kernighan's Algorithm
    while (N > 0):
        N = (N & (N - 1))
        bitCount += 1
 
    # If bitCount is even return 2
    # else return 1
    return (2) if bitCount % 2 == 0 else (1)
 
# Driver Code
N = 8
 
#Function Call
print(swapBitGame(N))
 
# This code is contributed by Samim Hossain Mondal.


C#




// C# code to implement the approach
using System;
 
public class GFG {
 
  // Function to find the winner
  static int swapBitGame(long N)
  {
    int bitCount = 0;
 
    // Calculate the number of set bit in
    // N using Brian Kernighan's Algorithm
    while (N != 0) {
      N = (N & (N - 1));
      bitCount++;
    }
 
    // If bitCount is even return 2
    // else return 1
    return bitCount % 2 == 0 ? 2 : 1;
  }
 
  static public void Main()
  {
 
    // Code
    long N = 8;
 
    // Function call
    Console.WriteLine(swapBitGame(N));
  }
}
 
// This code is contributed by lokesh.


Javascript




// JavaScript code to implement the approach
 
// Function to find the winner
const swapBitGame = (N) => {
    let bitCount = 0;
 
    // Calculate the number of set bit in
    // N using Brian Kernighan's Algorithm
    while (N) {
        N = (N & (N - 1));
        bitCount++;
    }
 
    // If bitCount is even return 2
    // else return 1
    return bitCount % 2 == 0 ? 2 : 1;
}
 
// Driver Code
let N = 8;
 
// Function Call
console.log(swapBitGame(N));
 
// This code is contributed by rakeshsahni.


Output

1

Time Complexity: O(log N)
Auxiliary Space: O(1)

Approach: Naive Recursion with memoization

Steps:

  • First, check if the solution for the given input N is already present in the memoization map.
  • If it is present, then return the value of the solution from the map to avoid recalculation.
  • If it is not present, use a loop to iterate through all the bits of N.
  • Remove the set bit by using the XOR operation.
  • Then recursively call the solve function for the new value of N.
  • After the recursive call, we use the OR operation to set the bit back to the original value of N.
  • Check if the returned solution from the recursive call is Player 2 losing or not. If it is Player 2 losing.
  • update the memoization map with the solution and return Player 1 wins. 
  • If we have iterated through all the bits of N and Player 2 has not lost.
  • update the memoization map with Player 2 winning and return Player 2 wins.
  • Finally, print the result.

Below is the code implementation of the above approach:

C++




// C++ program for the above problem using Naive Recursion with Memoization approach
#include<bits/stdc++.h>
using namespace std;
 
// Memoization table
unordered_map<int, int> memo;
 
// Recursive function
int solve(int n){
      // Base case
    if(n==0) return 2;
    if(memo.find(n) != memo.end()) return memo[n];
    int ans = 0;
    for(int i=0; i<31; i++){
        if(n & (1<<i)){
            n ^= (1<<i);
            ans = solve(n);
            n |= (1<<i);
              // If Player 1 wins in the current subproblem, then Player 2 will lose, so return 1.
            if(ans==2) {
                memo[n] = 1;
                return 1;
            }
        }
    }
      // If Player 1 cannot make any move, then Player 2 wins.
    memo[n] = 2;
    return 2;
}
 
// Driver code
int main(){
    int n=8;
    int res = solve(n);
    if(res==1) cout << "1";
    else cout << "2";
    return 0;
}


Output

1

Time Complexity: O(logN)
Auxiliary Space: O(N)


My Personal Notes arrow_drop_up
Last Updated : 17 May, 2023
Like Article
Save Article
Similar Reads
Related Tutorials