Find value after N operations to remove N characters of string S with given constraints
Given a string S of Size N. Initially, the value of count is 0. The task is to find the value of count after N operations to remove all the N characters of the given string S where each operation is:
- In each operation, select alphabetically the smallest character in the string S and remove that character from S and add its index to count.
- If multiple characters are present then remove the character having the smallest index.
Note: Consider string as 1-based indexing.
Examples:
Input: N = 5, S = “abcab”
Output: 8
Explanation:
Remove character ‘a’ then string becomes “bcab” and the count = 1.
Remove character ‘a’ then string becomes “bcb” and the count = 1 + 3 = 4.
Remove character ‘b’ then string becomes “cb” and the count = 4 + 1 = 5.
Remove character ‘b’ then string becomes “c” and the count = 5 + 2 = 7.
Remove character ‘c’ then string becomes “” and the count = 7 + 1 = 8.Input: N = 5 S = “aabbc”
Output: 5
Explanation:
The value after 5 operations to remove all the 5 characters of String aabbc is 5.
Naive Approach: The idea is to check if the string is empty or not. If it is not empty then following are the steps to solve the problem:
- Find the first occurrence of the smallest alphabets in the current string, let’s say ind and remove it from the string.
- Increase the count by ind + 1.
- Repeat the above step until the string becomes empty.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <iostream> #include <string> using namespace std; // Function to find the value after // N operations to remove all the N // characters of string S void charactersCount(string str, int n) { int count = 0; // Iterate till N while (n > 0) { char cur = str[0]; int ind = 0; for ( int j = 1; j < n; j++) { if (str[j] < cur) { cur = str[j]; ind = j; } } // Remove character at ind and // decrease n(size of string) str.erase(str.begin() + ind); n--; // Increase count by ind+1 count += ind + 1; } cout << count << endl; } // Driver Code int main() { // Given string str string str = "aabbc" ; int n = 5; // Function call charactersCount(str, n); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find the value after // N operations to remove all the N // characters of String S static void charactersCount(String str, int n) { int count = 0 ; // Iterate till N while (n > 0 ) { char cur = str.charAt( 0 ); int ind = 0 ; for ( int j = 1 ; j < n; j++) { if (str.charAt(j) < cur) { cur = str.charAt(j); ind = j; } } // Remove character at ind and // decrease n(size of String) str = str.substring( 0 , ind) + str.substring(ind + 1 ); n--; // Increase count by ind+1 count += ind + 1 ; } System.out.print(count + "\n" ); } // Driver Code public static void main(String[] args) { // Given String str String str = "aabbc" ; int n = 5 ; // Function call charactersCount(str, n); } } // This code is contributed by amal kumar choubey |
Python3
# Python3 program for the above approach # Function to find the value after # N operations to remove all the N # characters of String S def charactersCount( str , n): count = 0 ; # Iterate till N while (n > 0 ): cur = str [ 0 ]; ind = 0 ; for j in range ( 1 , n): if ( str [j] < cur): cur = str [j]; ind = j; # Remove character at ind and # decrease n(size of String) str = str [ 0 : ind] + str [ind + 1 :]; n - = 1 ; # Increase count by ind+1 count + = ind + 1 ; print (count); # Driver Code if __name__ = = '__main__' : # Given String str str = "aabbc" ; n = 5 ; # Function call charactersCount( str , n); # This code is contributed by Amit Katiyar |
C#
// C# program for the above approach using System; class GFG{ // Function to find the value after // N operations to remove all the N // characters of String S static void charactersCount(String str, int n) { int count = 0; // Iterate till N while (n > 0) { char cur = str[0]; int ind = 0; for ( int j = 1; j < n; j++) { if (str[j] < cur) { cur = str[j]; ind = j; } } // Remove character at ind and // decrease n(size of String) str = str.Substring(0, ind) + str.Substring(ind + 1); n--; // Increase count by ind+1 count += ind + 1; } Console.Write(count + "\n" ); } // Driver Code public static void Main(String[] args) { // Given String str String str = "aabbc" ; int n = 5; // Function call charactersCount(str, n); } } // This code is contributed by gauravrajput1 |
Javascript
<script> // Javascript program for the above approach // Function to find the value after // N operations to remove all the N // characters of String S function charactersCount(str, n) { let count = 0; // Iterate till N while (n > 0) { let cur = str[0].charCodeAt(); let ind = 0; for (let j = 1; j < n; j++) { if (str[j].charCodeAt() < cur) { cur = str[j].charCodeAt(); ind = j; } } // Remove character at ind and // decrease n(size of String) str = str.substring(0, ind) + str.substring(ind + 1); n--; // Increase count by ind+1 count += ind + 1; } document.write(count + "</br>" ); } // Given String str let str = "aabbc" ; let n = 5; // Function call charactersCount(str, n); // This code is contributed by divyeshrabadiya07. </script> |
5
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Approach: This problem can be solved using the concept of Binary Index Tree or Fenwick Tree. Below are the steps:
- Initially, Store the values of indices of all the characters/alphabet in increasing order.
- Start with the smallest alphabet ‘a’ and remove all ‘a’s in the order of their occurrence. After removing, select the next alphabet ‘b’, and repeat this step until all alphabets are removed.
- Removing the character means that its corresponding value in the array is changed to 0, indicating that it is removed.
- Before removing, find the position of the character in the string using the sum() method in Fenwick Tree and add the position value to the count.
- After removing all the characters in the string, the value of count is obtained.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Structure of Fenwick tree struct FenwickTree { // Binary indexed tree vector< int > bit; // bit[0] is not involved int n; // Constructor FenwickTree( int n) { this ->n = n + 1; bit = vector< int >(n, 0); } // Constructor FenwickTree(vector< int > a) : FenwickTree(a.size()) { for ( size_t i = 0; i < a.size(); i++) add(i, a[i]); } // Sum of arr[0] + arr[1] + ... // + arr[idx] where arr is array int sum( int idx) { int ret = 0; // Index in BITree[] is 1 more // than the index in arr[] idx = idx + 1; // Traverse the ancestors of // BITree[index] while (idx > 0) { // Add current element // of BITree to sum ret += bit[idx]; // Move index to parent // node in getSum View idx -= idx & (-idx); } // Return the result return ret; } // Function for adding arr[idx] // is equals to arr[idx] + val void add( int idx, int val) { // Val is nothing but "DELTA" // index in BITree[] is 1 // more than the index in arr[] idx = idx + 1; // Traverse all ancestors // and add 'val' while (idx <= n) { // Add 'val' to current // node of BI Tree bit[idx] += val; // Update index to that // of parent in update View idx += idx & (-idx); } } // Update the index void update( int idx, int val) { add(idx, val - valat(idx)); } // Perform the sum arr[l] + arr[l+1] // + ... + arr[r] int sum( int l, int r) { return sum(r) - sum(l - 1); } int valat( int i) { return sum(i, i); } void clr( int sz) { bit.clear(); n = sz + 1; bit.resize(n + 1, 0); // Initially mark all // are present (i.e. 1) for ( int i = 0; i < n; i++) add(i, 1); } }; // Function to count the characters void charactersCount(string str, int n) { int i, count = 0; // Store the values of indexes // for each alphabet vector<vector< int > > mp = vector<vector< int > >(26, vector< int >()); // Create FenwickTree of size n FenwickTree ft = FenwickTree(n); ft.clr(n); // Initially no indexes are // stored for each character for (i = 0; i < 26; i++) mp[i].clear(); i = 0; for ( char ch : str) { // Push 'i' to mp[ch] mp[ch - 'a' ].push_back(i); i++; } // Start with smallest character // and move towards larger character // i.e., from 'a' to 'z' (0 to 25) for (i = 0; i < 26; i++) { // index(ind) of current character // corres to i are obtained // in increasing order for ( int ind : mp[i]) { // Find the number of characters // currently present before // ind using ft.sum(ind) count += ft.sum(ind); // Mark the corresponding // ind as removed and // make value at ind as 0 ft.update(ind, 0); } } // Print the value of count cout << count << endl; } // Driver Code int main() { // Given string str string str = "aabbc" ; int n = 5; // Function call charactersCount(str, n); return 0; } |
Java
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Structure of Fenwick tree struct FenwickTree { // Binary indexed tree vector< int > bit; // bit[0] is not involved int n; // Constructor FenwickTree( int n) { this ->n = n + 1 ; bit = vector< int >(n, 0 ); } // Constructor FenwickTree(vector< int > a) : FenwickTree(a.size()) { for (size_t i = 0 ; i < a.size(); i++) add(i, a[i]); } // Sum of arr[0] + arr[1] + ... // + arr[idx] where arr is array int sum( int idx) { int ret = 0 ; // Index in BITree[] is 1 more // than the index in arr[] idx = idx + 1 ; // Traverse the ancestors of // BITree[index] while (idx > 0 ) { // Add current element // of BITree to sum ret += bit[idx]; // Move index to parent // node in getSum View idx -= idx & (-idx); } // Return the result return ret; } // Function for adding arr[idx] // is equals to arr[idx] + val void add( int idx, int val) { // Val is nothing but "DELTA" // index in BITree[] is 1 // more than the index in arr[] idx = idx + 1 ; // Traverse all ancestors // and add 'val' while (idx <= n) { // Add 'val' to current // node of BI Tree bit[idx] += val; // Update index to that // of parent in update View idx += idx & (-idx); } } // Update the index void update( int idx, int val) { add(idx, val - valat(idx)); } // Perform the sum arr[l] + arr[l+1] // + ... + arr[r] int sum( int l, int r) { return sum(r) - sum(l - 1 ); } int valat( int i) { return sum(i, i); } void clr( int sz) { bit.clear(); n = sz + 1 ; bit.resize(n + 1 , 0 ); // Initially mark all // are present (i.e. 1) for ( int i = 0 ; i < n; i++) add(i, 1 ); } }; // Function to count the characters void charactersCount(string str, int n) { int i, count = 0 ; // Store the values of indexes // for each alphabet vector<vector< int > > mp = vector<vector< int > >( 26 , vector< int >()); // Create FenwickTree of size n FenwickTree ft = FenwickTree(n); ft.clr(n); // Initially no indexes are // stored for each character for (i = 0 ; i < 26 ; i++) mp[i].clear(); i = 0 ; for ( char ch : str) { // Push 'i' to mp[ch] mp[ch - 'a' ].push_back(i); i++; } // Start with smallest character // and move towards larger character // i.e., from 'a' to 'z' (0 to 25) for (i = 0 ; i < 26 ; i++) { // index(ind) of current character // corres to i are obtained // in increasing order for ( int ind : mp[i]) { // Find the number of character // currently present before // ind using ft.sum(ind) count += ft.sum(ind); // Mark the corresponding // ind as removed and // make value at ind as 0 ft.update(ind, 0 ); } } // Print the value of count cout << count << endl; } // Driver Code int main() { // Given string str string str = "aabbc" ; int n = 5 ; // Function call charactersCount(str, n); return 0 ; } |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ // Structure of Fenwick tree public class FenwickTree { // Binary indexed tree public int []bit; // bit[0] is not involved int n; // Constructor public FenwickTree( int n) { this .n = n + 1; bit = new int [n]; } // Constructor public FenwickTree(List< int > a) { for ( int i = 0; i < a.Count; i++) add(i, a[i]); } // Sum of arr[0] + arr[1] + ... // + arr[idx] where arr is array public int sum( int idx) { int ret = 0; // Index in BITree[] is 1 more // than the index in []arr idx = idx + 1; // Traverse the ancestors of // BITree[index] while (idx > 0) { // Add current element // of BITree to sum ret += bit[idx]; // Move index to parent // node in getSum View idx -= idx & (-idx); } // Return the result return ret; } // Function for adding arr[idx] // is equals to arr[idx] + val public void add( int idx, int val) { // Val is nothing but "DELTA" // index in BITree[] is 1 // more than the index in []arr idx = idx + 1; // Traverse all ancestors // and add 'val' while (idx <= n) { // Add 'val' to current // node of BI Tree bit[idx] += val; // Update index to that // of parent in update View idx += idx & (-idx); } } // Update the index public void update( int idx, int val) { add(idx, val - valat(idx)); } // Perform the sum arr[l] + arr[l+1] // + ... + arr[r] public int sum( int l, int r) { return sum(r) - sum(l - 1); } public int valat( int i) { return sum(i, i); } public void clr( int sz) { n = sz + 1; bit = new int [n + 1]; // Initially mark all // are present (i.e. 1) for ( int i = 0; i < n; i++) add(i, 1); } }; // Function to count the characters static void charactersCount(String str, int n) { int i, count = 0; // Store the values of indexes // for each alphabet List< int > []mp = new List< int >[26]; for (i = 0; i < mp.Length; i++) mp[i] = new List< int >(); // Create FenwickTree of size n FenwickTree ft = new FenwickTree(n); ft.clr(n); // Initially no indexes are // stored for each character for (i = 0; i < 26; i++) mp[i].Clear(); i = 0; foreach ( char ch in str.ToCharArray()) { // Push 'i' to mp[ch] mp[ch - 'a' ].Add(i); i++; } // Start with smallest character // and move towards larger character // i.e., from 'a' to 'z' (0 to 25) for (i = 0; i < 26; i++) { // index(ind) of current character // corres to i are obtained // in increasing order foreach ( int ind in mp[i]) { // Find the number of characters // currently present before // ind using ft.sum(ind) count += ft.sum(ind); // Mark the corresponding // ind as removed and // make value at ind as 0 ft.update(ind, 0); } } // Print the value of count Console.Write(count + "\n" ); } // Driver Code public static void Main(String[] args) { // Given String str String str = "aabbc" ; int n = 5; // Function call charactersCount(str, n); } } // This code is contributed by amal kumar choubey |
Javascript
<script> // JavaScript program for the above approach // Structure of Fenwick tree class FenwickTree { constructor(n) { this .n = n + 1; this .bit = new Array(n); } _FenwickTree(a) { for (let i = 0; i < a.length; i++) this .add(i, a.get(i)); } // Sum of arr[0] + arr[1] + ... // + arr[idx] where arr is array sum(idx) { let ret = 0; // Index in BITree[] is 1 more // than the index in arr[] idx = idx + 1; // Traverse the ancestors of // BITree[index] while (idx > 0) { // Add current element // of BITree to sum ret += this .bit[idx]; // Move index to parent // node in getSum View idx -= idx & (-idx); } // Return the result return ret; } // Function for adding arr[idx] // is equals to arr[idx] + val add(idx,val) { // Val is nothing but "DELTA" // index in BITree[] is 1 // more than the index in arr[] idx = idx + 1; // Traverse all ancestors // and add 'val' while (idx <= this .n) { // Add 'val' to current // node of BI Tree this .bit[idx] += val; // Update index to that // of parent in update View idx += idx & (-idx); } } // Update the index update(idx,val) { this .add(idx, val - this .valat(idx)); } // Perform the sum arr[l] + arr[l+1] // + ... + arr[r] _sum(l,r) { return this .sum(r) - this ._sum(l - 1); } valat(i) { return this .sum(i, i); } clr(sz) { this .n = sz + 1; this .bit = new Array( this .n + 1); for (let i=0;i< this .n+1;i++) this .bit[i]=0; // Initially mark all // are present (i.e. 1) for (let i = 0; i < n; i++) this .add(i, 1); } } // Function to count the characters function charactersCount(str,n) { let i, count = 0; // Store the values of indexes // for each alphabet let mp = new Array(26); for (i = 0; i < mp.length; i++) mp[i] = []; // Create FenwickTree of size n let ft = new FenwickTree(n); ft.clr(n); // Initially no indexes are // stored for each character for (i = 0; i < 26; i++) mp[i]=[]; i = 0; for (let ch of str.split( "" ).values()) { // Push 'i' to mp[ch] mp[ch.charCodeAt(0) - 'a' .charCodeAt(0)].push(i); i++; } // Start with smallest character // and move towards larger character // i.e., from 'a' to 'z' (0 to 25) for (i = 0; i < 26; i++) { // index(ind) of current character // corres to i are obtained // in increasing order for (let ind of mp[i].values()) { // Find the number of characters // currently present before // ind using ft.sum(ind) count += ft.sum(ind); // Mark the corresponding // ind as removed and // make value at ind as 0 ft.update(ind, 0); } } // Print the value of count document.write(count + "<br>" ); } // Driver Code // Given String str let str = "aabbc" ; let n = 5; // Function call charactersCount(str, n); // This code is contributed by unknown2108 </script> |
Python3
# Python program for the above approach # Structure of Fenwick tree class FenwickTree: # Constructor def __init__( self , n): self .n = n + 1 self .bit = [ 0 ] * self .n # Constructor def _FenwickTree( self , a): for i in range ( len (a)): self .add(i, a[i]) # Sum of arr[0] + arr[1] + ... # + arr[idx] where arr is array def sum ( self , idx): ret = 0 # Index in BITree[] is 1 more # than the index in arr[] idx = idx + 1 # Traverse the ancestors of # BITree[index] while idx > 0 : # Add current element # of BITree to sum ret + = self .bit[idx] # Move index to parent # node in getSum View idx - = idx & ( - idx) return ret # Function for adding arr[idx] # is equals to arr[idx] + val def add( self , idx, val): # Val is nothing but "DELTA" # index in BITree[] is 1 # more than the index in arr[] idx = idx + 1 # Traverse all ancestors # and add 'val' while idx < = self .n: # Add 'val' to current # node of BI Tree self .bit[idx] + = val # Update index to that # of parent in update View idx + = idx & ( - idx) # Update the index def update( self , idx, val): self .add(idx, val - self .valat(idx)) # Perform the sum arr[l] + arr[l+1] # + ... + arr[r] def _sum( self , l, r): return self . sum (r) - self . sum (l - 1 ) def valat( self , i): return self . sum (i) def clr( self , sz): self .n = sz + 1 self .bit = [ 0 ] * ( self .n + 1 ) # Initially mark all # are present (i.e. 1) for i in range (sz): self .add(i, 1 ) # Function to count the characters def charactersCount(s, n): count = 0 # Store the values of indexes # for each alphabet mp = [[] for i in range ( 26 )] # Create FenwickTree of size n ft = FenwickTree(n) ft.clr(n) # Initially no indexes are # stored for each character for i, ch in enumerate (s): mp[ ord (ch) - ord ( 'a' )].append(i) # Start with smallest character # and move towards larger character # i.e., from 'a' to 'z' (0 to 25) for i in range ( 26 ): for ind in mp[i]: # Find the number of characters # currently present before # ind using ft.sum(ind) count + = ft. sum (ind) # Mark the corresponding # ind as removed and # make value at ind as 0 ft.update(ind, 0 ) # Print the value of count print (count) # Driver Code s = "aabbc" n = 5 charactersCount(s, n) # Contributed by adityasha4x71 |
5
Time Complexity: O(N*log(N))
Auxiliary Space: O(N)
Please Login to comment...